
Int. J. Metadata, Semantics and Ontologies, Vol. X, No. Y, 2016  

Copyright © 2016 Inderscience Enterprises Ltd. 

 

StreamJess: A Stream Reasoning Framework for 
Water Quality Monitoring 

Edmond Jajaga 

Department of Computer Science,  

South East European University,  

Tetovë, Macedonia 

Email: e.jajaga@seeu.edu.mk 

Lule Ahmedi 

Department of Computer Engineering,  

University of Prishtina,  

Prishtinë, Kosova 

Email: lule.ahmedi@uni-pr.edu 

Figene Ahmedi* 

Department of Hydro-Technic,  

University of Prishtina,  

Prishtinë, Kosova 

Email: figene.ahmedi@uni-pr.edu 

*Corresponding author 

Abstract: Stream data knowledge bases modeled with OWL are a proved natural ap-

proach. But, querying and reasoning over these knowledge bases is not supported with 

standard Semantic Web technologies like SPARQL and SWRL. Query processing sys-

tems enable querying, but to the best of our knowledge, Semantic Web rules are still 

unable to handle the required reasoning features for effective inference over stream data 

i.e. non-monotonic, closed-world and time-aware reasoning. In absence of such system, 

we showed in our previous work how Jess can be used for monitoring water quality, but 

by bringing input data manually. In this paper, we enable stream data support and thus a 

timely detection of faulty water quality statuses. The system also identifies the potential 

sources of pollution by also extending our ontology with the pollutants module. The so-

lution utilizes C-SPARQL abilities to filter and aggregate RDF streams on windows to 

enable closed-world and time-aware reasoning with Jess rules. Moreover, Jess Tab 

functions are used to enable non-monotonic behavior. 

Keywords: stream data; expert system; reasoning; Jess; rules; 

Reference to this paper should be made as follows: Jajaga, E., Ahmedi, L. and Ahmedi, F. 

(2016) ‘StreamJess: A Stream Reasoning Framework for Water Quality Monitoring’, Int. J. 

Metadata, Semantics and Ontologies, Vol. X, No. Y, pp.000–000.  

 

1 Introduction 

Sensor measurements, social networks, health monitoring, 

smart cities and other massive data sources have influenced 

a technological shift to a new concept known as Big Data 

(Computing Community Consortium, 2011). As a result, 

Big Data applications should be able to quickly consume 

volumes of these data and immediately infer as much 

knowledge as possible. The only paradigm which offers 

widely-accepted standards and tools for meeting these re-

quirements is the Semantic Web. Recently, a new research 

area, Stream Reasoning (SR), has evolved. It utilizes Se-

mantic Web techniques for reasoning with stream data (Del-

la Valle et al., 2008). Stream data are defined as unbounded 

sequences of time-varying data elements (Della Valle et al., 

2008). 

Semantic technologies have been successfully applied to 

stream data domains (Jajaga et al., 2013). OWL ontologies 

have been widely used for modeling stream data domains, 

e.g., the SSN ontology (Compton et al., 2012). Querying 

these knowledge bases has been merely done by SPARQL 

extensions e.g. C-SPARQL (Barbieri et al., 2010), EP-

SPARQL (Anicic et al., 2011), etc. However, the windows 
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opened over streams can determine changes in the static 

information sources, which cannot be applied by query sys-

tems (Tallevi-Diotallevi et al., 2013). For example, if a sen-

sor reading the values of a particular water quality parame-

ter provides critical values, then the measurement site’s 

status should be modified as “polluted”. Rules provide an 

effective mechanism for applying changes on the 

knowledge base induced by streams. Although layering 

different rule systems over ontologies has already been sug-

gested (Jajaga and Ahmedi, 2015), using Semantic Web 

standard rule languages, SWRL (Horrocks et al., 2015) and 

RIF (Boley et al., 2007), over stream data has to the best of 

our knowledge not been considered to date. The ideal SR 

system would be to implement rule-based reasoning tasks 

within the Semantic Web platform. In line with this vision, 

we have previously developed the INWATERSENSE (INWS) 

ontology (Ahmedi et al., 2013) and an expert system (Jajaga 

et al., 2015) demonstrating its usage. In this paper we apply 

Java Expert System Shell (Jess) (Hill, 2003) to reason over 

stream data sets. We plan to compare this system with the 

envisioned pure Semantic Web one. 

The Jess system is validated with simulated data in the wa-

ter quality monitoring (WQM) domain, but it is developed 

for use within the InWaterSense project
1
 with real data. 

InWaterSense is an EU funded research project aimed to 

apply recent advanced practices stemming from ICT in wa-

ter quality monitoring for healthy environment, and 

strengthen Kosovo's capacity in research in national priority 

sectors of environment and ICT. An intelligent wireless 

sensor network (WSN) for monitoring surface water quality 

has been deployed in a river in Kosova (Ahmedi et al., 

2013; 2015; Jajaga et al., 2013; 2015), and is further being 

enriched with more intelligent behavior like is the contribu-

tion presented in this paper.  

The paper is organized as follows. Section 2 describes the 

motivation of building our Jess expert system StreamJess. 

The main contribution of the paper is presented in Section 3 

and 4 which exhibits the system design and its implementa-

tion, respectively. System validation is presented in Section 

5 through examples in the domain of WQM. Section 6 pre-

sents StreamJess system challenges and related works to-

gether with the discussion of building a pure Semantic Web 

as a future prospect. Finally, the paper closes with conclu-

sion and future plans. 

 
2 Problem statement 

Stream data domains differ from other Semantic Web ones 

because of the high frequency of changes in the knowledge 

base. As a consequence, a SR system should not only reason 

over background data but also over real-time streaming 

data. This distinction makes the reasoning tasks hard to 

implement in Semantic Web. Namely, the Semantic Web 

rules run over all information present in the knowledge 

base. In SR this inadequacy has been solved with the intro-

duction of the notion of windows. A window extracts the 

                                                 
1
 http://inwatersense.uni-pr.edu/ 

last data stream elements, be it physical (a given number of 

triples) or logical (a number of triples occurring in a given 

time interval) (Barbieri et al., 2010).   

SR query processing systems are effectively giving a real-

time perception of the situation. As query systems they do 

not support or are limited on performing ontology modifica-

tions. As a consequence, they do not allow using previous 

queried results for further reasoning. Thus, it is hard to ana-

lyze historical events. On the other side, the firing of rules 

will continually publish new information in ontology, from 

which can be further inferred new knowledge. This way the 

resulting inferences can be eventually archived in the form 

of historical data. 

Regarding the reasoning features, a SR rule-based system 

should support closed-world, non-monotonic, incremental 

and time-aware reasoning.  

2.1. Monotonicity 

Semantic Web technologies provide a good basis for model-

ing different domains of discourse. Since the Web is open 

and accessible by everyone, Semantic Web languages 

(OWL and SWRL) manage knowledge in terms of open 

world assumption (OWA). In OWA, if some knowledge is 

missing it is classified as undefined, as opposed to the 

closed-world assumption (CWA) which classifies the miss-

ing information as false. In the Web, addition of new infor-

mation does not change any previously asserted information 

which is known as monotonic reasoning. This is not the case 

with non-monotonic reasoning in which addition of new 

information implies eventual modifications in the 

knowledge base. OWL and SWRL’s OWA and monotonic 

reasoning in Stream Reasoning application domains do not 

offer the desired expressivity level. For example, modifying 

the river pollution status is not allowed through SWRL 

rules. Following the SWRL’s monotonic nature a river in-

stance firstly asserted as “clean” cannot be later modified to 

“polluted”.  

Non-monotonic operators, aggregates and negation, are 

common requirements for processing data streams (Zaniolo, 

2012). Aggregate operations are present in almost every rule 

for classifying water bodies into corresponding statuses 

(Statutory Instruments, 2011) e.g. finding arsenic observa-

tions’ average value. OWA’s approach means one cannot 

“close” the world to calculate an average value and thus 

CWA will be a preferable approach. One can use SQWRL 

(O’Connor and Das, 2009), a SWRL-based OWL query 

language, constructs such as sqwrl:average, but, that 

approach is not supported. Using SQWRL constructs in 

SWRL rules for asserting new knowledge is not allowed (an 

answer received on the Protégé mailing list). 

Additionally, a number of example rules need to infer new 

knowledge in absence of a fact, the concept known as nega-

tion as failure (NAF), which is based on the closed-world 

assumption. For example, the rule “assign ‘undetermined 

status’ to those remaining bodies of water where the agency 

is not, by that date, in a position to assign a reliable interim 
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classification due to a lack of data or other reason” (Statuto-

ry Instruments, 2011) cannot be expressed in SWRL. 

2.2. Incremental reasoning 

Pre-computing and storing of implicit ontology entailments 

is a process known as materialization. Every time a change 

occurs, a new materialization need to be computed, which in 

Semantic Web is known as incremental maintenance of 

materialization (Volz et al., 2005). As opposed to traditional 

Semantic Web applications, in SR ones change to the facts 

occurs “regularly” i.e. new facts are added and other ones 

updated or deleted. A technique for computing ontological 

entailments on stream reasoning is presented in (Barbieri et 

al. 2010). It uses Logic Programming, respectively Datalog 

rules, to compute incremental materialization for window-

based changes of ontological entailments. This approach is 

concerned with computing complete and correct materiali-

zation enforced by changes to facts.  

According to (Volz et al., 2005), there is another type of 

incremental materialization which needs to be addressed in 

rule-enabled ontologies. Namely, changes to the ontology 

will typically require changes in the rules. Authors of (Volz 

et al., 2005) describe a technique of this type of incremental 

materialization. The frequency of changes to the ontology in 

SR applications is the same as in traditional Semantic Web 

ones. Therefore, the techniques developed for this type of 

incremental materialization intended for “static” knowledge 

bases would also be suitable for stream data knowledge 

bases.   

2.3. Time-aware reasoning 

SR systems should include time-annotated data i.e. the time 

model, and like Complex Event Processing (CEP) 

(Luckham and Schulte, 2011) should offer explicit operators 

for capturing temporal patterns over streaming information 

(Margara et al., 2014). INWS ontology implements the time 

model through OWL Time ontology. Supporting temporal 

operators (serial, sequence etc.) means the system can ex-

press the following example rule: Enhanced phosphorus 

levels in surface waters (that contain adequate nitrogen) can 

stimulate excessive algal growth (Foundation for Water 

Research, 2005). If before excessive algal growth, enhanced 

phosphorus level has been observed then more probably the 

change of phosphorus levels has caused the algal growth. 

Thus, a sequence of these events needs to be tracked to de-

tect the occurrence of this complex event.  

Moreover, in order to enable reasoning in terms of time and 

quantity intervals of continuous and possibly infinite 

streams the SR notion of windows needs to be adapted for 

rules (Mileo et al., 2013). In traditional settings, rules oper-

ate over all asserted facts in the ontology. This is not practi-

cal with stream data as data flow is massive and rules may 

not always consider all RDF streams. Instead, rules must be 

evaluated against a certain set of RDF streams which will 

also reduce information load. For example, a rule to assert 

which sensors provided observation measurements that are 

above allowed average threshold the last 3 minutes sliding 

the window every minute, will be easily expressible with the 

help of the window. With each window processing new 

logical decisions will arise: new information need to be 

published on the knowledge base or a fact modifica-

tion/retraction need to be performed. 

 
3 Conceptual architecture 

The conceptual architecture of StreamJess is depicted in 

Figure 1. It consists of four layers: data, ontology, stream 

filtering and aggregation, and rules layer. Domain-specific 

data (blue track left) and data streams (blue track right) 

constitute the data layer. The green track of the figure repre-

sents the ontology model. A module for filtering and aggre-

gating stream data is represented by the brown track. Rules 

(pink track) in StreamJess mainly fall into two broad cate-

gories:  

 monitoring rules (pink track left), rules for contin-

uous classification of water bodies based on in situ 

observations, and 

 investigation rules (pink track right), which fire af-

ter monitoring rules detect any critical status. The 

information of sources of pollution stored into the 

pollutants ontology is used to prejudge the causer 

of the pollution.  

 

Figure 1. StreamJess conceptual architecture 

 

Both kinds of rules are loaded at system start up.  Grey ar-

rows describe data flow direction. Our system acts as a 

pipeline. Sensor produced or simulated data streams are 

firstly filtered and aggregated within a time or tuple-based 

window and then the output results are published as obser-

vation data in the working memory and on the ontology. 

The running rule engine indicates the facts change and in-

fers new knowledge according to the preloaded rules. In our 

case of study, incoming water quality measured values are 



242 E. Jajaga et al.  

filtered and aggregated within a window. The calculated 

results are used by monitoring rules to continually classify 

the observations within the appropriate water statuses. 

Whenever a critical status becomes detected, appropriate 

investigation rule acts to identify the potential source(s) of 

pollution. 

4 Implementation 

StreamJess is implemented as a Java console application. 

The application uses an instance of jess.Rete which is 

created at system start up. It provides the central access 

point of the application as it loads the ontology, builds the 

working memory, holds the list of rules and offers the 

methods for doing CRUD operations over facts i.e. ontology 

individuals (Hill, 2003). The module for stream data filter-

ing and aggregation is implemented with a well-known 

stream processing system C-SPARQL (Barbieri et al., 

2010).  Multiple C-SPARQL queries and Jess rules can be 

defined to process RDF streams and reason over them. 

StreamJess is open for loading other SR domain ontologies 

and write appropriate C-SPARQL queries and Jess rules. 

4.1. Ontology layer 

Ontologies are defined as formal specification of a shared 

conceptualization (Gruber, 1993). They have been exten-

sively used for modeling stream data domains. In our previ-

ous work (Ahmedi et al. 2013), we have built the INWS 

ontology, an ontology framework for modeling WQM sys-

tems. INWS ontology consists of three ontology modules: 

core, regulations and pollutants. The core ontology is a 

SSN-based ontology (Compton et al., 2012) which models 

WSN infrastructure entities, observations and water quality 

parameters. The regulations ontology models classification 

of water bodies based on different regulation authorities 

such as Water Framework Directive (WFD) (European Par-

liament and Council of Europe, 2000). Finally, the pollu-

tants ontology models the entities for investigating sources 

of pollution. 

Protégé functions of Jess in Jess Tab (Jess Wiki) were used 

to manage with the knowledge base. Jess Tab is a plug-in 

for the Protégé ontology editor and knowledge-engineering 

framework that allows one to use the Java Expert System 

Shell (Jess) and Protégé together (Jess Wiki). All ontology 

modules are imported and loaded at application start up. 

Moreover, ontology class instances are also mapped into the 

Jess’s working memory and java.util.Random class is 

imported for generating random numbers, which are used 

for creating unique instance names.  

4.1.1. The Pollutants Ontology 

The INWS pollutants ontology was designed based on ex-

amples of sources of pollution and the potential pollutant 

discharges which could arise described in (Foundation for 

Water Research, 2005). As depicted in Figure 2, two classes 

were created: PollutionSources, describing the 

sources of pollution e.g. urban storm water discharges, and 

Pollutants, representing contaminants present in the envi-

ronment or which might enter the environment which, due 

to its properties or amount or concentration, causes harm 

e.g. heavy metals. A property potentialPollutant 

links individuals of PollutionSources and Pollu-

tants [Foundation for Water Research, 2005, p.3]. 

PollutionSources class is also linked with a string 

through two properties: pollutionSourceName, repre-

senting the name of the pollution source, and 

pollutionType, representing the type of the pollution 

source which can be point, diffuse or both of them. Moreo-

ver, a property hasSourcesOfPollution was added to 

relate river’s measurement sites with the sources of pollu-

tion. 

4.2. Data layer 

In general, there are two kinds of data that SR applications 

deal with: domain specific ABox data which do not change 

or change “slowly” that are formulated in the form of RDF 

data e.g. river names, and stream data e.g. sensor observed 

data. In StreamJess RDF data are specified by end-users and 

populate the corresponding ontology modules before system 

start up. 

 

Figure 2. TBox and ABox statements for the INWS pollu-

tants ontology module 
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Query processing systems (e.g., C-SPARQL and EP-

SPARQL) model stream data in the form of RDF streams. 

RDF streams are defined as a sequence of RDF triples that 

are continuously produced and annotated with a timestamp 

(Barbieri et al., 2010). For example in StreamJess, a single 

RDF stream holds information of a measured water quality 

name and value coupled with timestamp and location. In a 

real scenario the input RDF streams are generated by sensor 

probes deployed in different measurement sites. Here, as per 

validation purposes, we use simulated and randomly gener-

ated values.  

4.3. Stream processing 

A C-SPARQL engine is also initialized at application start –

up to enable filtering and aggregation of data streams in 

logical or physical windows. We have currently implement-

ed two queries, one for considering RDF streams one by one 

and another one using aggregation functions. However, 

other queries can be easily encoded and run simultaneously. 

After running the application, the user is queried to specify 

the type of the windows and their parameter values. If one 

prefers physical windows then he/she will have to specify 

the size of the window by entering the number of tuples. 

Otherwise, one can choose logical windows and thus speci-

fying the window size by giving the number of seconds. In 

the case of time-based windows, the default value for inter-

vals between windows is set TUMBLING i.e. non-

overlapping windows.  

Each C-SPARQL query in StreamJess eventually outputs 

triples of values: the water quality name, the location of 

measurements and the calculated value. Every output triple 

is stored into the knowledge base and mapped into a tempo-

rary observation class. Thus, C-SPARQL enables time-

aware and closed-world reasoning. The non-monotonic 

reasoning is complemented by the reasoning engine, de-

scribed in the next subsection. The processing engine runs 

independently from the reasoning engine. 

4.4. Stream reasoning 

Before implementing StreamJess, in order to enable Jess 

rules to reason over stream data, three approaches were 

considered: 

 Extending Jess with stream data reasoning features,  

 Translating Jess to another rule system which sup-

ports stream data reasoning and 

 Layering Jess on top of another system to fill the 

gaps of Jess in support of stream data reasoning. 

Extending Jess with stream data reasoning features is very 

expensive. Event stream processing with Jess is a fragile 

system, the code is complex and a lot of interferences have 

to be taken into account (Ermert, 2009). As the author of 

(Ermert, 2009) argues, code could not be optimized even for 

simple temporal operations over event-streams.  Another 

approach would be to translate Jess constructs into any CEP 

system. To the best of our knowledge there is not any evi-

dence of such an approach. Albeit of the translation over-

head we do not have confidence of how the system would 

perform.   

Given the drawbacks if approaching any of the previous two 

options, it was decided to layer Jess over an existing stream 

processing system such as C-SPARQL. However, as a query 

language, it is not intended to have any effect on the under-

lying ontology. In StreamJess we use Jess rules for populat-

ing the knowledge base. Moreover, they enable data modifi-

cations i.e. non-monotonic reasoning and the tools for ar-

chiving data. 

After C-SPARQL processes the window and publishes new 

observation results, a new call to the Rete method run() is 

invoked for doing rule-based reasoning. As illustrated in 

Figure 3, the Jess engine runs the rules against the newly 

published temporary observation facts and it eventually 

activates the rule’s RHS actions. The inferred knowledge 

forms another set of RDF data which is stored back into the 

ontology for further reasoning. Namely, monitoring rules do 

the water quality classifications based on the WFD regula-

tion rules. In case a critical status is detected i.e. new in-

stance of a ‘moderate’ status class gets published, investiga-

tion rules act to identify the pollution source. Namely, it 

prints out the names of the pollution sources present on the 

observation’s measurement site stored on the background 

knowledge. Furthermore, it archives the instance of the 

status for historical purposes. 

5 Examples of StreamJess 

As a proof of concept, we have implemented StreamJess in 

a typical WQM scenario based on WSN. Sensors in 

InWaterSense WQM system are deployed in different 

measurement sites at different times. They continually emit 

water quality values. StreamJess will (1) classify the water 

body into the appropriate status according to WFD regula-

tions (Environment Agency, 2011; Statutory Instruments, 

2009) and (2) identify the potential sources of pollution if 

the pollutants values are out of the allowed thresholds. In 

general, each water quality is monitored and investigated 

with a monitoring rule and an investigation one. A couple of 

examples are used to validate the system performance. Both 

examples run at the same time over the same RDF streams 

which are filtered out by two different C-SPARQL queries: 

one for finding the average values of water quality observa-

tions and another one for considering observation values 

one by one. The simulator was set up to randomly generate 

observation data for an arbitrary number of 70 measurement 

sites and 11 water quality parameters. A single sensor ob-

servation was arbitrarily set to be produced every second 

and includes 6 RDF streams representing time, location, 

device and quality of observation information. For example, 

in a 20 seconds window size 120 tuples will be produced.  
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Figure 3. StreamJess system workflow 

Moreover, the system supports registering multiple stream-

ers to run concurrently. 

5.1. Example 1: pH observations 

A WFD rule for classifying pH observations looks as fol-

lows: The pH as individual value should be between 4.5 and 

9.0 (Statutory Instruments, 2011). Potential sources of pol-

lution from which pH discharges could arise include: agri-

cultural fertilizers, farm wastes and silage, effluent dis-

charges from sewage treatment works, fish farming, organic 

waste recycling to land, soil cultivation and urban storm 

water discharges (Foundation for Water Research, 2005). 

A simple C-SPARQL query to filter out incoming pH ob-

servations, i.e. pH RDF streams, is described below: 

1 REGISTER QUERY IndObservations AS  

2 PREFIX inws: <http://inwatersense.uni-

pr.edu/ontologies/inws-core.owl#> 

3 PREFIX ssn: 

<http://purl.oclc.org/NET/ssnx/ssn#> 

4 PREFIX dul: <http://www.loa-

cnr.it/ontologies/DUL.owl#> 

5 SELECT ?qo ?loc ?dv 

6 FROM STREAM <http://inwatersense.uni-

pr.edu/stream> [RANGE 10s STEP 10s] 

7 WHERE { 

8 ?o ssn:qualityOfObservation ?qo . 

9 ?o ssn:observationResult ?r . 

10 ?r ssn:hasValue ?v . 
11 ?v dul:hasDataValue ?dv . 
12 ?o inws:observationResultLocation ?loc  
13 FILTER (?qo = inws:pH) 

14 } 

The query name is registered on line 1 and prefixes used in 

the query are declared on lines 2, 3 and 4. The query runs 

against the input RDF streams in the time frame of 10 se-

conds, sliding the window by 10 seconds (line 6). The cho-

sen time frame is arbitrary and can be changed as desired. It 

produces triples of values (line 5): the water quality name 

(?qo), the location of measurements (?loc) and the obser-

vation value (?dv). Based on the INWS metadata descrip-

tions the incoming observation’s (?o) water quality name is 

saved on variable ?qo (line 8). To get the observation’s 

value, ?o individuals are bound with individuals ?r 

through ssn:observationResult property (line 9). 

These ones in turn are related with individuals of class 

ssn:ObservationValue (line 10), which are finally 

related with the data value ?dv through 

dul:hasDataValue property (line 11). The location of 

observations ?loc is get through 

inws:observationResultLocation property. 

Finally, the list of observations is filtered out to include only 

pH observations (line 13). 

Output query results, i.e. (?qo, ?loc, ?dv) triples, are 

consumed by Jess Tab  functions for asserting new facts into 

the knowledge base. make-instance and slot-

insert$ functions are used for creating new class indi-

viduals and inserting property values respectively. Namely, 

for every outputted triple, a new observation instance of the 

temporary class tmpObservation (a subclass of the 

ssn:Observation class) is created. 

tmpObservation holds the most current observation 

data which are retracted after StreamJess rules process 

them. Moreover, after retraction they are archived in the 
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ssn:Observation class in the form of historical data. 

The newly created observation individual is further related 

with ?qo, ?loc  and ?dv values based on the structure 

of the SSN and INWS metadata descriptions. The water 

quality name ?qo i.e. pH, becomes related with the new 

observation instance through the 

ssn:qualityOfObservation data property. The new 

observation instance also becomes related with ?loc 

through observationResultLocation object proper-

ty. The location instance is of type Point of the basic geo 

location vocabulary, which means that it possesses longi-

tude and latitude properties. A new ssn:SensorOutput 

individual is also created for holding the observed value 

?dv. It is linked with the observation instance through 

ssn:observationResult property. Meanwhile, a new 

instance of class ssn:ObservationValue is created to 

be related with the previously created 

ssn:SensorOutput individual through 

ssn:hasValue property. The ?dv value is assigned to it 

through dul:hasDataValue data property. 

To implement the scenario of this example a monitoring 

rule was designated for deciding the pH status and another 

one for identifying the eventual sources of pollution. The 

monitoring rule looks like follows (ontologies’ full IRI are 

omitted for brevity): 

1 (defrule classifyPHObsValues 
2 (declare (salience 54)) 
3 (object (is-a ssn#ObservationValue)  
4 (OBJECT ?ov)(DUL.owl#hasDataValue ?x)) 
5 (object (is-a ssn#SensorOutput)  
6 (OBJECT ?so)(ssn#hasValue ?ov)) 
7 (object (is-a time#Instant)               
8 (OBJECT ?ot)(time#inXSDDateTime ?time)) 
9 (object (is-a inws-core.owl#tmpObservation) 
10 (OBJECT ?o)(ssn#observationResult ?so) 
11 (inws-core.owl#observationResultLocation 

?loc)(ssn#observationResultTime ?ot) 

12 (ssn#qualityOfObservation ?qo&:(eq (in-

stance-name ?qo) inws-core.owl#pH))) 

13 => 
14 (bind ?*r* (random)) 
15 (printout t "(StreamJess)") 
16 (if (and (> ?x 4.5) (< ?x 9))then (and  
17 (printout t "(" ?*r* ") pH status is 

GOOD/HIGH" crlf "On: " ?time crlf "In: " 

(instance-name ?loc) crlf) 

18 (make-instance (str-cat "GoodHighPHStatus" 

?*r*) of inws-

regulations.owl#GoodHighPHMeasurement map) 

19 (slot-insert$ (str-cat "GoodHighPHStatus" 

?*r*)                            inws-

core.owl#observationResultLocation 1 ?loc) 

20 (slot-insert$ (str-cat "GoodHighPHStatus" 

?*r*) ssn#observationResultTime 1 ot) 

21 (slot-set ?loc                                 

inws-regulations.owl#isPolluted FALSE)) 

22 else (and 
23 (printout t "(" ?*r* ") pH status is 

MODERATE" crlf "On: " ?time crlf "In: " 

(instance-name ?loc) crlf) 

24 (make-instance (str-cat "ModeratePHStatus" 

?*r*) of inws-

regulations.owl#tmpModeratePHMeasurement 

map)                         

25 (slot-insert$ (str-cat "ModeratePHStatus" 

?*r*) inws-

core.owl#observationResultLocation  1 ?loc) 

26 (slot-insert$ (str-cat "ModeratePHStatus" 

?*r) ssn#observationResultTime 1 ?ot)                     

27 (slot-set ?loc                                 

inws-regulations.owl#isPolluted TRUE))) 

28 (make-instance (str-cat (instance-name ?o) 
?*r*) of ssn#Observation map) 

29 (slot-insert$ (str-cat (instance-name ?o) 

?*r*) inws-

core.owl#observationResultLocation 1 ?loc) 

30 (slot-insert$ (str-cat (instance-name ?o) 

?*r*) ssn#observationResult 1 ?so) 

31 (slot-insert$ (str-cat (instance-name ?o) 

?*r*) ssn#observationResultTime 1 ?ot) 

32 (slot-insert$ (str-cat (instance-name ?o) 

?*r*) ssn#qualityOfObservation 1 inws-

core.owl#pH) 

(unmake-instance ?o)) 

The first line serves for declaring rule’s definition and as-

serting its name. The second one is for declaring the rule 

priority. The left hand side (LHS) of the rule (lines 3-12) 

matches all pH observation individuals (?o) present in the 

tmpObservation class. The right hand side (RHS) of the 

rule (lines 14-31) asks if the matched observation value 

(?x) falls between the interval of values 4.5 and 9. If so, the 

observation is classified in “good/high” status (lines 16-21), 

otherwise it becomes “moderate” (lines 22-27). After the 

classification takes place the observation individual is stored 

in the ssn:Observation class (lines 28-32) and the 

temporary observation individual (?o) gets retracted from 

the knowledge base (line 33).  

Concretely, for each matched individual from temporary 

observation class ?o, on the RHS a new random value is 

generated to be used for new individual names (line 14). An 

information string is printed out in the console to indicate 

that the upcoming outputs are processed by StreamJess rules 

(line 15). The code in line 16 asks whether the observation 

value ?x falls between the allowed values for “good/high” 

status. If so, the user gets informed about the status detected 

at measurement site ?loc on time ?time. Next, a new 

individual of GoodHighPHMeasurement class gets 

created (line 18) and related with the location (line 19) and 

time (line 20) of measurement. Moreover, the pollution 

status of the measurement site ?loc is modified to “clean” 

by changing its isPolluted value to “false” (line 21). 

str-cat command is used to concatenate strings. If the if 

condition specified on line 16 fails then the actions for spec-

ifying “moderate” status are activated. The steps to do this 

are analogical to the ones used for specifying “good/high” 

status. Namely, before setting the status of the measurement 

site as “polluted” (line 27) the new status instance is created 

to be of type tmpModeratePHMeasurement (line 24). 

These instances are temporary because the investigation rule 
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to find potential pH sources of pollution will make use of 

them and after that will delete them. Prior to deletion the 

status instance is stored as a new instance of 

ModeratePHMeasurement class as historical data (lines 

28-32) copying all ?o properties. The retraction is per-

formed for preventing investigations to be activated only 

once. The pH investigation rule is described below: 

1 (defrule findPHsourcesOfPollution 
2 (declare (salience 553)) 
3 (object (is-a epa.owl#MeasurementSite) 

(OBJECT ?loc) (inws-

pollutants.owl#hasSourcesOfPollution 

$?sitepoll)) 

4 (object (is-a inws-

regulations.owl#tmpModeratePHMeasurement) 

(OBJECT ?mob) (inws-

core.owl#observationResultLocation ?loc) 

(ssn#observationResultTime ?ot)) 

5 =>  
6 (bind ?*r* (random)) 
7 (make-instance (str-cat (instance-name 

?mob) ?*r*) of inws-

regulations.owl#ModeratePHMeasurement map) 

8 (slot-insert$ (str-cat (instance-name ?mob) 
?*r*) inws-

core.owl#observationResultLocation 1 ?loc) 

9 (slot-insert$ (str-cat (instance-name ?mob) 
?*r*) ssn#observationResultTime 1 ?ot) 

10 (foreach ?poll ?sitepoll  
11  (foreach ?pollLsItem (slot-get ?poll inws-

pollutants.owl#potentialPollutant) 

12   (if(eq (instance-name ?pollLsItem) inws-
core.owl#pH) then 

13    (printout t "pH pollution source: " 

(instance-name ?poll) " crlf) 

14    (slot-insert$ (str-cat (instance-name 

?mob) ?*r*) inws-

regulations.owl#foundPollutionSources 1 

(instance-name ?poll))))) 

15 (unmake-instance ?mob)) 

The rule binds the temporary “moderate” status pH observa-

tions into ?mob variable and gets its location ?loc and 

time ?ot (line 4). The code in line 3 relates the list of 

sources of pollution present on the measurement site ?loc 

into the list variable $?sitepoll. The RHS of the rule 

starts with archiving the temporary status instance ?mob 

(lines 6-9). Namely, in absence of a Jess or Jess Tab mecha-

nism to change the instance class assignment, the temporary 

status instance is copied in a new instance of class 

ModeratePHMeasurement. Afterwards, the list mem-

bers of ?sitepoll is iterated (line 10) to match only 

those sources of pollution which could increase pH dis-

charges (lines 11-12). Namely, for each source of pollution 

in ?sitepoll i.e. present on the measurement site, its 

potential pollutants list ?pollLsItem is checked if it 

includes pH. The matching one’s name will be printed out 

(line 13). As per saving historical data the archived status 

instance gets related with the list of pollution sources 

through foundPollutionSources property (line 14). 

Finally, the temporary status instance ?mob gets discarded 

from the knowledge base.  An example output of Example 1 

is illustrated in Figure 4. As can be observed, C-SPARQL 

query IndObservations has produced three output 

results. Two of these results (#1 and #3) have been classi-

fied with “good/high” status by rule 

classifyPHObsValues, while the remaining one (#2) 

with “moderate” status. Since the result #2 has been classi-

fied as a critical status the investigation rule 

findPHsourcesOfPollution has fired and identified 

that potential source of the pollution is “urban storm water 

discharges” on site ms11. 

 

Figure 4. An output excerpt of the running Example 1 

5.2. Example 2: Biochemical Oxygen Demand (BOD5) 

observations  

A WFD rule for classifying - BOD5 observations is as fol-

lows: If BOD5 measurements in mg O2/l is less than 1.3 

(mean), then river belongs to “high” status of oxygen condi-

tion; if it is less than 1.5 then river belongs to “good” status 

of oxygen condition; otherwise the river belongs to “moder-

ate” status of oxygen condition (Statutory Instruments, 

2011). Potential sources of pollution from which BOD5 

discharges could arise include: contaminated land, farm 

wastes and silage, fish farming, effluent discharges from 

sewage treatment works, landfill sites and urban storm wa-

ter discharges (Foundation for Water Research, 2005). 

The C-SPARQL query to calculate the water quality ob-

served average value on each window is given below: 

1 REGISTER QUERY AvgObservations AS  

... 

5 SELECT ?qo ?loc (AVG(?dv) AS ?avg)  

6 FROM STREAM <http://inwatersense.uni-

pr.edu/stream> [RANGE 20s STEP 20s]  

... 

13 FILTER (?qo != inws:pH) 

... 

15 GROUP BY ?qo ?loc 

This query is similar to IndObservations query de-

scribed previously. The omitted lines are the same. As op-

posed to it, this query filters the RDF streams to include all 

but those of pH observations (line 13). Moreover, it uses 

aggregate functions such as AVG (line 5) to calculate the 

average value of observations which are firstly grouped by 

water quality name and then by location of measurement 
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(line 15). It is arbitrary set to run every 20 seconds sliding 

the window by 20 seconds (line 6). 

Similar to Example 1, the output query results, i.e. (?qo, 

?loc, ?avg) triples, are consumed by Jess Tab  functions 

to create new tmpObservation instances. Afterwards, 

the following monitoring rule, similar to 

classifyPHObsValues, classifies BOD5 observations: 

1 (defrule classifyBOD5ObsValues 

... 

12(ssn#qualityOfObservation ?qo&:(eq   (in-

stance-name ?qo)(instance-name inws-

core.owl#BOD)))) 

=> 

... 

16 (if (and (< ?x 1.5) (> ?x 1.3)) then (and 

17 (printout t "(" ?*r* ") BOD status is GOOD" 

crlf "On: " ?time crlf "In: " (instance-

name ?loc) crlf) 

18 (make-instance (str-cat "GoodBODStatus" 

?*r*) of inws-

regulations.owl#GoodBODMeasurement map) 

19 (slot-insert$ (str-cat "GoodBODStatus" 

?*r*) inws-

core.owl#observationResultLocation 1 ?loc) 

 ... 

20 (slot-insert$ (str-cat "GoodBODStatus" 

?*r*) ssn#observationResultTime 1 ?ot) 

... 

22 (if (< ?x 1.3) then <HIGH status classifi-

cation code here>) 

23 (if (> ?x 1.5) then <MODERATE status clas-

sification code here>)) 

Similarly to the rule classifyPHObsValues lines 3-12 

bind BOD5 observation data present in the temporary class 

tmpObservation with their corresponding variables. 

Lines 16-20 encode the semantics of the expression “if it is 

less than 1.5 then river belongs to “good” status of oxygen 

condition” from the example statement. Classification of 

water bodies into “high” (line 22) and “moderate” (line 23) 

status is omitted because it’s analogical with lines 16-20 

with the appropriate change on the name of the status, the 

corresponding class name and the setting of the pollution 

status of the site.  

The streams processed by the C-SPARQL query 

AvgObservations will result in zero or many BOD5 

observations. The number of BOD5 observations will de-

pend on the number of measurement sites. For example, as 

illustrated in Figure 5, C-SPARQL processing of RDF 

streams has resulted with 3 new observations on 3 meas-

urement sites: ms10, ms11 and ms12. Two observations 

have been classified as of “moderate” status (Figure 5 line 

#1 and #2) and one of “high” status (Figure 5 #3). 

Whenever a critical i.e. “moderate” BOD5 measurement is 

detected the following investigation rule to detect BOD5 

potential sources of pollution is activated: 

1 (defrule findBOD5SourcesOfPollution 

... 

=>   

...  

7 (make-instance (str-cat (instance-name 

?mob) ?*r*) of inws-

regulations.owl#ModerateBODMeasurement map) 

...  

12 (if(eq (instance-name ?pollLsItem) inws-

core.owl#BOD) then  

13 (printout t "BOD pollution source: " (in-

stance-name ?poll) crlf) 

... 

Similar to findPHsourcesOfPollution rule, this one 

will cause the Rete engine to detect newly asserted individ-

uals of tmpModerateBODMeasurement on a specified 

measurement site. In fact, the LHS of the rules is the same. 

It will get the sources of pollution on that site which in turn 

are filtered out to include only BOD5 potential pollutants 

(lines 9-13). Each of the matched sources of pollution will 

be printed out in the console as shown in observation #1 and 

#2 in Figure 5. Namely, a “moderate” BOD5 status is de-

tected on sites ms11 and ms10. Potential sources of pollu-

tion include urban storm water discharges and fish farming 

on site ms11 while urban storm water is potential source of 

BOD5 discharges on site ms10. 

 

Figure 5. An output excerpt of the running Example 2 

5.3. Example 3: The ‘undetermined status’ 

NAF feature is enabled in the stream processing level. Re-

call sub section 2.1 example of assigning the ‘undetermined 

status’ to measurement sites to which the data are missing. 

The SPARQL support for NAF was utilized as described in 

the following query. 

REGISTER STREAM undefinedMeasurmentSites  AS 

PREFIX inwsp: <http://inwatersense.uni-

pr.edu/ontologies/inws-pollutants.owl#> 

PREFIX rdf: < http://www.w3.org/1999/02/22-
rdf-syntax-ns#> 

PREFIX twcc: 

<http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#> 

SELECT ?ms 

FROM STREAM <http://inwatersense.uni-

pr.edu/stream> [RANGE 60s STEP 60s] 

FROM <http://inwatersense.uni-

pr.edu/ontologies/data.rdf> 
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WHERE {  

?ms rdf:type twcc:MeasurementSite 

OPTIONAL { ?ms inwsp:isPolluted ?tf } .  
FILTER (!BOUND(?tf))  

}   

After (C-SPARQL) processing and (Jess) reasoning on each 

observation instance a measurement site will be related with 

a “true” or “false” value through isPolluted property. 

This query will match the remaining measurement sites, 

present in the background knowledge base (data.rdf 

file), for which no pollution status is recorded. The query is 

arbitrarily set to run every minute. On each query output 

result the matching measurement sites’ isPolluted 
status is set to ‘undefined’ through Jess Tab make-

instance construct. 

6 Related Works 

Two main strategies exist for systems combining ontologies 

with rules: hybrid and homogeneous approaches (Jajaga et 

al., 2013; Eiter et al., 2006). In the former one, also called 

loosely-coupled approach, the reasoning is done by interfac-

ing existing rule reasoner with existing ontology reasoner, 

while in the latter one, also called tightly-coupled approach, 

both ontologies and rules are embedded into the same logi-

cal language without making a priori distinction between the 

rule predicates and the ontology predicates (Eiter et al., 

2006).  

6.1. Hybrid approaches 

Hybrid approaches layer different non-DL rule systems on 

top of DL ontologies like: production rules, CEP, LP, an-

swer set programming (ASP), etc. In the literature this ap-

proach is also referred to as, integration of ontologies and 

rules with strict semantic separation (Eiter et al., 2006). In 

our previous work (Jajaga et al., 2013), we described in 

more detail about each one of these approaches and their 

pros and cons. In general, hybrid solutions have achieved 

the desired system behavior while main drawbacks include: 

translation and reasoner issues and side-effects occurrence.  

The first approaches combining ontologies with production 

rules are described in (Sottara et al., 2012; Chau, 2007). 

Sottara et al. (2012) model a hybrid Environmental Decision 

Support System (EDSS) for Waste-Water Treatment Plants 

(WWTP). As an application of production rules they infer 

invalid NO3 measurement values. They argue that the 

WWTP domain should be modeled through ontologies, for 

modeling sensor data, paired with decision-making rules, 

for processing incoming sensor data and recommending 

actions to be taken. Another system implemented in terms 

of production rules has been designed by Chau (2007) in the 

domain of water quality modeling. Namely, the system sim-

ulates human expertise during the problem solving of 

coastal hydraulic and transport processes. Both forward-

chaining and backward-chaining are used collectively dur-

ing the inference process Chau (2007). Even though that 

these approaches, together with our previous work (Jajaga et 

al., 2015) argue that pairing ontologies with production 

rules provides a fruitful solution, they do not make any dis-

tinction between stream and static data. As such, they do not 

implement the window feature. 

StreamRule (Mileo et al., 2013) represents the pioneer of 

coupling stream processing systems with ASP non-

monotonic reasoning. Even though the approach is still 

much more prototypical it demonstrates how non-monotonic 

and time-aware reasoning can be integrated into a unique 

platform for stream data reasoning. Similarly to our ap-

proach, the continuous rule feature is implemented through 

separate steps. Namely, stream filtering and aggregation is 

done through a stream query processor such as CQELS (Le-

Phuoc et al., 2011), while OClingo (Gebser et al., 2013) is 

used to enable non-monotonic reasoning. In StreamJess we 

use C-SPARQL for filtering and aggregation purposes, 

while non-monotonic reasoning is achieved through Jess 

rules and Jess Tab functions. Even though that CQELS out-

performs C-SPARQL (Le-Phuoc et al., 2013), we preferred 

C-SPARQL following its advantage to use nested aggrega-

tions and negation (Lanzanasto, 2009; Le-Phuoc et al., 

2012). Moreover, we plan to support temporal operators, 

which lack any support in CQELS (Lanzanasto, 2009). The 

main distinction of the stream reasoning component be-

tween StreamRule and StreamJess fall on the strategy of the 

inference process. Namely, OClingo, as LP-based approach, 

follows the backward chaining approach. It means to start 

from the conclusion of the rule and try to match the facts of 

the rule’s condition part. Jess uses the Rete algorithm 

(Forgy, 1982) to do fast pattern matching, which is natively 

forward chaining strategy. Even though the algorithm is 

ideally suited for complex event detection, it does not sup-

port temporal reasoning (Walzer et al., 2008). Moreover, it 

saves the states between cycles, which is not preferred in 

situations when most of the data change. However, its ex-

tensions are in place to support stream reasoning e.g. 

(Walzer et al., 2008), (Komazec and Cerri, 2011) and 

(Schmidt et al., 2008). Jess also supports backward chain-

ing, which is effectively simulated in terms of forward 

chaining rules (Hill, 2003). The forward chaining technique 

starts from the rule’s condition part and finds the facts satis-

fying the rule’s conclusion. Both approaches have their pros 

and cons: backward chaining is more memory efficient 

while forward chaining is faster but consumes more 

memory (Hardy, 2013). We decided to use Jess because of 

the ability to use both strategies. Regarding the implement-

ed features StreamRule lacks the historical data manage-

ment component, which is one of the key requirements of 

SR tools (Margara et al., 2014). StreamJess keeps evidence 

of every previous environment state. For example, one can 

query the INWS ontology for a particular measurement 

site’s pollution status of the past. OClingo feeds back the 

reasoning results into Java runtime for further processing or 

display, while in StreamJess, the results are also deployed 

back into the knowledge base and thus the memory gets 

released and the data are available for query and retrieval. 
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This was implemented through the Jess Tab’s save-project 

function, which is called after processing each C-SPARQL 

window or alternatively be set to run periodically.  

Recently, Ali et al. (2016) describe the descendant of 

StreamRule, which support C-SPARQL aside of CQELS. 

The system supports reasoning even in incomplete infor-

mation cases through NAF, but like StreamRule it does not 

support historical data management. The SPARQL support 

of NAF was utilized in StreamJess to complement the diffi-

culties for enabling NAF in Jess. Moreover, the reasoning 

results are returned as a JSON object to the corresponding 

web socket clients, while in StreamJess the reasoning re-

sults are returned as standard RDF data populating corre-

sponding ontology classes. Their stream reasoning compo-

nent is tested only with small amounts of input data. Our 

initial experimental results on StreamJess show better per-

formance than the OClingo component implemented in 

StreamRule and (Ali et al., 2016) for small inputs, while 

system’s performance evaluation for larger inputs is part of 

our future works. Jess is memory-intensive application, but 

recent Java Virtual Machines include flexible and configu-

rable garbage collection subsystem which is responsible for 

finding and deleting unused objects (Hill, 2003). As argued 

by Hill (2003), the adjustment of two parameters: heap size 

and the object nursery size, has resulted with an improved 

25% better performance. 

Rscale (Liebig and Opitz, 2011) is another industrially-

approved reasoning system which utilizes OWL 2 RL lan-

guage profile to infer new knowledge. It enables incremen-

tal reasoning, non-monotonic and closed-world reasoning 

through translation of facts and rules into SQL tables and 

queries respectively. However, it does not support time-

aware reasoning.  

ETALIS (Anicic et al., 2010) together with EP-SPARQL 

(Anicic et al., 2011) enables CEP with stream reasoning. 

Even though ETALIS offers reasoning on time and location 

spaces it does not implement the windows feature. Time-

based windows are supported through its wrapper EP-

SPARQL, but complicated aggregations within windows are 

not supported (Le-Phuoc et al., 2012). Moreover, there is no 

support for triple-based windows too.   

6.2. Semantic Web approaches 

In the literature this approach is also referred to as interac-

tion of ontologies and rules with tight semantic integration 

(Eiter et al., 2006). Even though the tight coupling of the 

model the rule language has distinct advantages e.g. no 

mapping mechanism is required between them, these ap-

proaches mainly suffer from limited expressiveness or de-

cidability (Eiter et al., 2006). Thus, to date, there is not a 

tight-coupled approach which supports all the stream rea-

soning requirements. Approaches described by Keßler et al. 

(2009) and Wei and Barnaghi (2009) do not make any dis-

tinction between stream and static data, while also lack im-

plementation. They prove that SWRL can be used to infer 

new and approximate knowledge in stream data domains. 

However, their approach does not consider time-aware and 

non-monotonic reasoning. Recently, a SPARQL extension 

(Anderson et al., 2016) that uses CONSTRUCT/WHERE 

clauses to express rules has been proposed. Yet again this 

approach does not consider non-monotonic reasoning. The 

works presented by Albeladi et al. (2015) Tallevi-Diotallevi 

et al. (2013) describe a Rete-based (Forgy, 1982) approach 

of RDFS entailment rules for producing data in a continuous 

manner. Although supporting time-aware and incremental 

reasoning, the approach does not deal with non-monotonic 

and closed-world reasoning. JNOMO (Calero et al., 2012) 

shows how SWRL can be extended to embrace non-

monotonicity, CWA and NAF. Namely, NotExist operator 

is defined to “close” the world and to enable fact retraction. 

However, it does not deal with stream data, while inclusion 

of temporal reasoning is envisioned as per future works. 

7 Conclusion 

Until recently most of the SR research has been dedicated 

on ontology and query processing developments. Dealing 

with Big Data issues through query processing is not 

enough. Our work goes beyond the query processing 

achievements and thus focusing on rule level implications of 

stream data. SWRL, on its own, lacks the required expres-

sivity level to reason over stream data. As a result, we built 

StreamJess, a production rule system capable of expressive 

reasoning over stream data. It layers Jess on top of C-

SPARQL to enable time-aware, closed-world and non-

monotonic reasoning on stream data domains. Jess and Jess 

Tab functions were used to enable non-monotonic reason-

ing. The system was validated in a WQM case study by 

running multiple C-SPARQL queries and Jess rules at the 

same time over the same RDF streams. Example 1 demon-

strated how C-SPARQL queries can be used to filter RDF 

streams in time windows. The outputted results were pro-

cessed by Jess rules to classify individual pH observations 

into appropriate WFD statuses. Furthermore, an investiga-

tion rule fired in case of critical status detection and identi-

fied the potential sources of pollution. Example 2 illustrated 

how WFD classification can be realized based on the aver-

age value of the observations. Except filtering the RDF 

streams were aggregated and then grouped by measurement 

site to classify and investigate BOD5 observations.  

The INWS ontology was also extended to meet the require-

ments for investigating sources of pollution. We believe that 

maintaining materializations on rules following ontology 

changes do not differ for stream data domains. However, a 

deeper research in this direction remains per future work. 

We also plan to compare StreamJess against the envisioned 

pure Semantic Web system (Jajaga and Ahmedi, 2015). 

Furthermore, our future work also includes enabling tem-

poral operators (serial, sequence, etc.) on StreamJess. 
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