
Int. J. Metadata, Semantics and Ontologies, Vol. X, No. Y, 2016

Copyright © 2016 Inderscience Enterprises Ltd.

StreamJess: A Stream Reasoning Framework for
Water Quality Monitoring

Edmond Jajaga

Department of Computer Science,

South East European University,

Tetovë, Macedonia

Email: e.jajaga@seeu.edu.mk

Lule Ahmedi

Department of Computer Engineering,

University of Prishtina,

Prishtinë, Kosova

Email: lule.ahmedi@uni-pr.edu

Figene Ahmedi*

Department of Hydro-Technic,

University of Prishtina,

Prishtinë, Kosova

Email: figene.ahmedi@uni-pr.edu

*Corresponding author

Abstract: Stream data knowledge bases modeled with OWL are a proved natural ap-

proach. But, querying and reasoning over these knowledge bases is not supported with

standard Semantic Web technologies like SPARQL and SWRL. Query processing sys-

tems enable querying, but to the best of our knowledge, Semantic Web rules are still

unable to handle the required reasoning features for effective inference over stream data

i.e. non-monotonic, closed-world and time-aware reasoning. In absence of such system,

we showed in our previous work how Jess can be used for monitoring water quality, but

by bringing input data manually. In this paper, we enable stream data support and thus a

timely detection of faulty water quality statuses. The system also identifies the potential

sources of pollution by also extending our ontology with the pollutants module. The so-

lution utilizes C-SPARQL abilities to filter and aggregate RDF streams on windows to

enable closed-world and time-aware reasoning with Jess rules. Moreover, Jess Tab

functions are used to enable non-monotonic behavior.

Keywords: stream data; expert system; reasoning; Jess; rules;

Reference to this paper should be made as follows: Jajaga, E., Ahmedi, L. and Ahmedi, F.

(2016) ‘StreamJess: A Stream Reasoning Framework for Water Quality Monitoring’, Int. J.

Metadata, Semantics and Ontologies, Vol. X, No. Y, pp.000–000.

1 Introduction

Sensor measurements, social networks, health monitoring,

smart cities and other massive data sources have influenced

a technological shift to a new concept known as Big Data

(Computing Community Consortium, 2011). As a result,

Big Data applications should be able to quickly consume

volumes of these data and immediately infer as much

knowledge as possible. The only paradigm which offers

widely-accepted standards and tools for meeting these re-

quirements is the Semantic Web. Recently, a new research

area, Stream Reasoning (SR), has evolved. It utilizes Se-

mantic Web techniques for reasoning with stream data (Del-

la Valle et al., 2008). Stream data are defined as unbounded

sequences of time-varying data elements (Della Valle et al.,

2008).

Semantic technologies have been successfully applied to

stream data domains (Jajaga et al., 2013). OWL ontologies

have been widely used for modeling stream data domains,

e.g., the SSN ontology (Compton et al., 2012). Querying

these knowledge bases has been merely done by SPARQL

extensions e.g. C-SPARQL (Barbieri et al., 2010), EP-

SPARQL (Anicic et al., 2011), etc. However, the windows

240 E. Jajaga et al.

opened over streams can determine changes in the static

information sources, which cannot be applied by query sys-

tems (Tallevi-Diotallevi et al., 2013). For example, if a sen-

sor reading the values of a particular water quality parame-

ter provides critical values, then the measurement site’s

status should be modified as “polluted”. Rules provide an

effective mechanism for applying changes on the

knowledge base induced by streams. Although layering

different rule systems over ontologies has already been sug-

gested (Jajaga and Ahmedi, 2015), using Semantic Web

standard rule languages, SWRL (Horrocks et al., 2015) and

RIF (Boley et al., 2007), over stream data has to the best of

our knowledge not been considered to date. The ideal SR

system would be to implement rule-based reasoning tasks

within the Semantic Web platform. In line with this vision,

we have previously developed the INWATERSENSE (INWS)

ontology (Ahmedi et al., 2013) and an expert system (Jajaga

et al., 2015) demonstrating its usage. In this paper we apply

Java Expert System Shell (Jess) (Hill, 2003) to reason over

stream data sets. We plan to compare this system with the

envisioned pure Semantic Web one.

The Jess system is validated with simulated data in the wa-

ter quality monitoring (WQM) domain, but it is developed

for use within the InWaterSense project
1
 with real data.

InWaterSense is an EU funded research project aimed to

apply recent advanced practices stemming from ICT in wa-

ter quality monitoring for healthy environment, and

strengthen Kosovo's capacity in research in national priority

sectors of environment and ICT. An intelligent wireless

sensor network (WSN) for monitoring surface water quality

has been deployed in a river in Kosova (Ahmedi et al.,

2013; 2015; Jajaga et al., 2013; 2015), and is further being

enriched with more intelligent behavior like is the contribu-

tion presented in this paper.

The paper is organized as follows. Section 2 describes the

motivation of building our Jess expert system StreamJess.

The main contribution of the paper is presented in Section 3

and 4 which exhibits the system design and its implementa-

tion, respectively. System validation is presented in Section

5 through examples in the domain of WQM. Section 6 pre-

sents StreamJess system challenges and related works to-

gether with the discussion of building a pure Semantic Web

as a future prospect. Finally, the paper closes with conclu-

sion and future plans.

2 Problem statement

Stream data domains differ from other Semantic Web ones

because of the high frequency of changes in the knowledge

base. As a consequence, a SR system should not only reason

over background data but also over real-time streaming

data. This distinction makes the reasoning tasks hard to

implement in Semantic Web. Namely, the Semantic Web

rules run over all information present in the knowledge

base. In SR this inadequacy has been solved with the intro-

duction of the notion of windows. A window extracts the

1
 http://inwatersense.uni-pr.edu/

last data stream elements, be it physical (a given number of

triples) or logical (a number of triples occurring in a given

time interval) (Barbieri et al., 2010).

SR query processing systems are effectively giving a real-

time perception of the situation. As query systems they do

not support or are limited on performing ontology modifica-

tions. As a consequence, they do not allow using previous

queried results for further reasoning. Thus, it is hard to ana-

lyze historical events. On the other side, the firing of rules

will continually publish new information in ontology, from

which can be further inferred new knowledge. This way the

resulting inferences can be eventually archived in the form

of historical data.

Regarding the reasoning features, a SR rule-based system

should support closed-world, non-monotonic, incremental

and time-aware reasoning.

2.1. Monotonicity

Semantic Web technologies provide a good basis for model-

ing different domains of discourse. Since the Web is open

and accessible by everyone, Semantic Web languages

(OWL and SWRL) manage knowledge in terms of open

world assumption (OWA). In OWA, if some knowledge is

missing it is classified as undefined, as opposed to the

closed-world assumption (CWA) which classifies the miss-

ing information as false. In the Web, addition of new infor-

mation does not change any previously asserted information

which is known as monotonic reasoning. This is not the case

with non-monotonic reasoning in which addition of new

information implies eventual modifications in the

knowledge base. OWL and SWRL’s OWA and monotonic

reasoning in Stream Reasoning application domains do not

offer the desired expressivity level. For example, modifying

the river pollution status is not allowed through SWRL

rules. Following the SWRL’s monotonic nature a river in-

stance firstly asserted as “clean” cannot be later modified to

“polluted”.

Non-monotonic operators, aggregates and negation, are

common requirements for processing data streams (Zaniolo,

2012). Aggregate operations are present in almost every rule

for classifying water bodies into corresponding statuses

(Statutory Instruments, 2011) e.g. finding arsenic observa-

tions’ average value. OWA’s approach means one cannot

“close” the world to calculate an average value and thus

CWA will be a preferable approach. One can use SQWRL

(O’Connor and Das, 2009), a SWRL-based OWL query

language, constructs such as sqwrl:average, but, that

approach is not supported. Using SQWRL constructs in

SWRL rules for asserting new knowledge is not allowed (an

answer received on the Protégé mailing list).

Additionally, a number of example rules need to infer new

knowledge in absence of a fact, the concept known as nega-

tion as failure (NAF), which is based on the closed-world

assumption. For example, the rule “assign ‘undetermined

status’ to those remaining bodies of water where the agency

is not, by that date, in a position to assign a reliable interim

StreamJess: A Stream Reasoning Framework for Water Quality Monitoring 241

classification due to a lack of data or other reason” (Statuto-

ry Instruments, 2011) cannot be expressed in SWRL.

2.2. Incremental reasoning

Pre-computing and storing of implicit ontology entailments

is a process known as materialization. Every time a change

occurs, a new materialization need to be computed, which in

Semantic Web is known as incremental maintenance of

materialization (Volz et al., 2005). As opposed to traditional

Semantic Web applications, in SR ones change to the facts

occurs “regularly” i.e. new facts are added and other ones

updated or deleted. A technique for computing ontological

entailments on stream reasoning is presented in (Barbieri et

al. 2010). It uses Logic Programming, respectively Datalog

rules, to compute incremental materialization for window-

based changes of ontological entailments. This approach is

concerned with computing complete and correct materiali-

zation enforced by changes to facts.

According to (Volz et al., 2005), there is another type of

incremental materialization which needs to be addressed in

rule-enabled ontologies. Namely, changes to the ontology

will typically require changes in the rules. Authors of (Volz

et al., 2005) describe a technique of this type of incremental

materialization. The frequency of changes to the ontology in

SR applications is the same as in traditional Semantic Web

ones. Therefore, the techniques developed for this type of

incremental materialization intended for “static” knowledge

bases would also be suitable for stream data knowledge

bases.

2.3. Time-aware reasoning

SR systems should include time-annotated data i.e. the time

model, and like Complex Event Processing (CEP)

(Luckham and Schulte, 2011) should offer explicit operators

for capturing temporal patterns over streaming information

(Margara et al., 2014). INWS ontology implements the time

model through OWL Time ontology. Supporting temporal

operators (serial, sequence etc.) means the system can ex-

press the following example rule: Enhanced phosphorus

levels in surface waters (that contain adequate nitrogen) can

stimulate excessive algal growth (Foundation for Water

Research, 2005). If before excessive algal growth, enhanced

phosphorus level has been observed then more probably the

change of phosphorus levels has caused the algal growth.

Thus, a sequence of these events needs to be tracked to de-

tect the occurrence of this complex event.

Moreover, in order to enable reasoning in terms of time and

quantity intervals of continuous and possibly infinite

streams the SR notion of windows needs to be adapted for

rules (Mileo et al., 2013). In traditional settings, rules oper-

ate over all asserted facts in the ontology. This is not practi-

cal with stream data as data flow is massive and rules may

not always consider all RDF streams. Instead, rules must be

evaluated against a certain set of RDF streams which will

also reduce information load. For example, a rule to assert

which sensors provided observation measurements that are

above allowed average threshold the last 3 minutes sliding

the window every minute, will be easily expressible with the

help of the window. With each window processing new

logical decisions will arise: new information need to be

published on the knowledge base or a fact modifica-

tion/retraction need to be performed.

3 Conceptual architecture

The conceptual architecture of StreamJess is depicted in

Figure 1. It consists of four layers: data, ontology, stream

filtering and aggregation, and rules layer. Domain-specific

data (blue track left) and data streams (blue track right)

constitute the data layer. The green track of the figure repre-

sents the ontology model. A module for filtering and aggre-

gating stream data is represented by the brown track. Rules

(pink track) in StreamJess mainly fall into two broad cate-

gories:

 monitoring rules (pink track left), rules for contin-

uous classification of water bodies based on in situ

observations, and

 investigation rules (pink track right), which fire af-

ter monitoring rules detect any critical status. The

information of sources of pollution stored into the

pollutants ontology is used to prejudge the causer

of the pollution.

Figure 1. StreamJess conceptual architecture

Both kinds of rules are loaded at system start up. Grey ar-

rows describe data flow direction. Our system acts as a

pipeline. Sensor produced or simulated data streams are

firstly filtered and aggregated within a time or tuple-based

window and then the output results are published as obser-

vation data in the working memory and on the ontology.

The running rule engine indicates the facts change and in-

fers new knowledge according to the preloaded rules. In our

case of study, incoming water quality measured values are

242 E. Jajaga et al.

filtered and aggregated within a window. The calculated

results are used by monitoring rules to continually classify

the observations within the appropriate water statuses.

Whenever a critical status becomes detected, appropriate

investigation rule acts to identify the potential source(s) of

pollution.

4 Implementation

StreamJess is implemented as a Java console application.

The application uses an instance of jess.Rete which is

created at system start up. It provides the central access

point of the application as it loads the ontology, builds the

working memory, holds the list of rules and offers the

methods for doing CRUD operations over facts i.e. ontology

individuals (Hill, 2003). The module for stream data filter-

ing and aggregation is implemented with a well-known

stream processing system C-SPARQL (Barbieri et al.,

2010). Multiple C-SPARQL queries and Jess rules can be

defined to process RDF streams and reason over them.

StreamJess is open for loading other SR domain ontologies

and write appropriate C-SPARQL queries and Jess rules.

4.1. Ontology layer

Ontologies are defined as formal specification of a shared

conceptualization (Gruber, 1993). They have been exten-

sively used for modeling stream data domains. In our previ-

ous work (Ahmedi et al. 2013), we have built the INWS

ontology, an ontology framework for modeling WQM sys-

tems. INWS ontology consists of three ontology modules:

core, regulations and pollutants. The core ontology is a

SSN-based ontology (Compton et al., 2012) which models

WSN infrastructure entities, observations and water quality

parameters. The regulations ontology models classification

of water bodies based on different regulation authorities

such as Water Framework Directive (WFD) (European Par-

liament and Council of Europe, 2000). Finally, the pollu-

tants ontology models the entities for investigating sources

of pollution.

Protégé functions of Jess in Jess Tab (Jess Wiki) were used

to manage with the knowledge base. Jess Tab is a plug-in

for the Protégé ontology editor and knowledge-engineering

framework that allows one to use the Java Expert System

Shell (Jess) and Protégé together (Jess Wiki). All ontology

modules are imported and loaded at application start up.

Moreover, ontology class instances are also mapped into the

Jess’s working memory and java.util.Random class is

imported for generating random numbers, which are used

for creating unique instance names.

4.1.1. The Pollutants Ontology

The INWS pollutants ontology was designed based on ex-

amples of sources of pollution and the potential pollutant

discharges which could arise described in (Foundation for

Water Research, 2005). As depicted in Figure 2, two classes

were created: PollutionSources, describing the

sources of pollution e.g. urban storm water discharges, and

Pollutants, representing contaminants present in the envi-

ronment or which might enter the environment which, due

to its properties or amount or concentration, causes harm

e.g. heavy metals. A property potentialPollutant

links individuals of PollutionSources and Pollu-

tants [Foundation for Water Research, 2005, p.3].

PollutionSources class is also linked with a string

through two properties: pollutionSourceName, repre-

senting the name of the pollution source, and

pollutionType, representing the type of the pollution

source which can be point, diffuse or both of them. Moreo-

ver, a property hasSourcesOfPollution was added to

relate river’s measurement sites with the sources of pollu-

tion.

4.2. Data layer

In general, there are two kinds of data that SR applications

deal with: domain specific ABox data which do not change

or change “slowly” that are formulated in the form of RDF

data e.g. river names, and stream data e.g. sensor observed

data. In StreamJess RDF data are specified by end-users and

populate the corresponding ontology modules before system

start up.

Figure 2. TBox and ABox statements for the INWS pollu-

tants ontology module

StreamJess: A Stream Reasoning Framework for Water Quality Monitoring 243

Query processing systems (e.g., C-SPARQL and EP-

SPARQL) model stream data in the form of RDF streams.

RDF streams are defined as a sequence of RDF triples that

are continuously produced and annotated with a timestamp

(Barbieri et al., 2010). For example in StreamJess, a single

RDF stream holds information of a measured water quality

name and value coupled with timestamp and location. In a

real scenario the input RDF streams are generated by sensor

probes deployed in different measurement sites. Here, as per

validation purposes, we use simulated and randomly gener-

ated values.

4.3. Stream processing

A C-SPARQL engine is also initialized at application start –

up to enable filtering and aggregation of data streams in

logical or physical windows. We have currently implement-

ed two queries, one for considering RDF streams one by one

and another one using aggregation functions. However,

other queries can be easily encoded and run simultaneously.

After running the application, the user is queried to specify

the type of the windows and their parameter values. If one

prefers physical windows then he/she will have to specify

the size of the window by entering the number of tuples.

Otherwise, one can choose logical windows and thus speci-

fying the window size by giving the number of seconds. In

the case of time-based windows, the default value for inter-

vals between windows is set TUMBLING i.e. non-

overlapping windows.

Each C-SPARQL query in StreamJess eventually outputs

triples of values: the water quality name, the location of

measurements and the calculated value. Every output triple

is stored into the knowledge base and mapped into a tempo-

rary observation class. Thus, C-SPARQL enables time-

aware and closed-world reasoning. The non-monotonic

reasoning is complemented by the reasoning engine, de-

scribed in the next subsection. The processing engine runs

independently from the reasoning engine.

4.4. Stream reasoning

Before implementing StreamJess, in order to enable Jess

rules to reason over stream data, three approaches were

considered:

 Extending Jess with stream data reasoning features,

 Translating Jess to another rule system which sup-

ports stream data reasoning and

 Layering Jess on top of another system to fill the

gaps of Jess in support of stream data reasoning.

Extending Jess with stream data reasoning features is very

expensive. Event stream processing with Jess is a fragile

system, the code is complex and a lot of interferences have

to be taken into account (Ermert, 2009). As the author of

(Ermert, 2009) argues, code could not be optimized even for

simple temporal operations over event-streams. Another

approach would be to translate Jess constructs into any CEP

system. To the best of our knowledge there is not any evi-

dence of such an approach. Albeit of the translation over-

head we do not have confidence of how the system would

perform.

Given the drawbacks if approaching any of the previous two

options, it was decided to layer Jess over an existing stream

processing system such as C-SPARQL. However, as a query

language, it is not intended to have any effect on the under-

lying ontology. In StreamJess we use Jess rules for populat-

ing the knowledge base. Moreover, they enable data modifi-

cations i.e. non-monotonic reasoning and the tools for ar-

chiving data.

After C-SPARQL processes the window and publishes new

observation results, a new call to the Rete method run() is

invoked for doing rule-based reasoning. As illustrated in

Figure 3, the Jess engine runs the rules against the newly

published temporary observation facts and it eventually

activates the rule’s RHS actions. The inferred knowledge

forms another set of RDF data which is stored back into the

ontology for further reasoning. Namely, monitoring rules do

the water quality classifications based on the WFD regula-

tion rules. In case a critical status is detected i.e. new in-

stance of a ‘moderate’ status class gets published, investiga-

tion rules act to identify the pollution source. Namely, it

prints out the names of the pollution sources present on the

observation’s measurement site stored on the background

knowledge. Furthermore, it archives the instance of the

status for historical purposes.

5 Examples of StreamJess

As a proof of concept, we have implemented StreamJess in

a typical WQM scenario based on WSN. Sensors in

InWaterSense WQM system are deployed in different

measurement sites at different times. They continually emit

water quality values. StreamJess will (1) classify the water

body into the appropriate status according to WFD regula-

tions (Environment Agency, 2011; Statutory Instruments,

2009) and (2) identify the potential sources of pollution if

the pollutants values are out of the allowed thresholds. In

general, each water quality is monitored and investigated

with a monitoring rule and an investigation one. A couple of

examples are used to validate the system performance. Both

examples run at the same time over the same RDF streams

which are filtered out by two different C-SPARQL queries:

one for finding the average values of water quality observa-

tions and another one for considering observation values

one by one. The simulator was set up to randomly generate

observation data for an arbitrary number of 70 measurement

sites and 11 water quality parameters. A single sensor ob-

servation was arbitrarily set to be produced every second

and includes 6 RDF streams representing time, location,

device and quality of observation information. For example,

in a 20 seconds window size 120 tuples will be produced.

244 E. Jajaga et al.

Figure 3. StreamJess system workflow

Moreover, the system supports registering multiple stream-

ers to run concurrently.

5.1. Example 1: pH observations

A WFD rule for classifying pH observations looks as fol-

lows: The pH as individual value should be between 4.5 and

9.0 (Statutory Instruments, 2011). Potential sources of pol-

lution from which pH discharges could arise include: agri-

cultural fertilizers, farm wastes and silage, effluent dis-

charges from sewage treatment works, fish farming, organic

waste recycling to land, soil cultivation and urban storm

water discharges (Foundation for Water Research, 2005).

A simple C-SPARQL query to filter out incoming pH ob-

servations, i.e. pH RDF streams, is described below:

1 REGISTER QUERY IndObservations AS

2 PREFIX inws: <http://inwatersense.uni-

pr.edu/ontologies/inws-core.owl#>

3 PREFIX ssn:

<http://purl.oclc.org/NET/ssnx/ssn#>

4 PREFIX dul: <http://www.loa-

cnr.it/ontologies/DUL.owl#>

5 SELECT ?qo ?loc ?dv

6 FROM STREAM <http://inwatersense.uni-

pr.edu/stream> [RANGE 10s STEP 10s]

7 WHERE {

8 ?o ssn:qualityOfObservation ?qo .

9 ?o ssn:observationResult ?r .

10 ?r ssn:hasValue ?v .
11 ?v dul:hasDataValue ?dv .
12 ?o inws:observationResultLocation ?loc
13 FILTER (?qo = inws:pH)

14 }

The query name is registered on line 1 and prefixes used in

the query are declared on lines 2, 3 and 4. The query runs

against the input RDF streams in the time frame of 10 se-

conds, sliding the window by 10 seconds (line 6). The cho-

sen time frame is arbitrary and can be changed as desired. It

produces triples of values (line 5): the water quality name

(?qo), the location of measurements (?loc) and the obser-

vation value (?dv). Based on the INWS metadata descrip-

tions the incoming observation’s (?o) water quality name is

saved on variable ?qo (line 8). To get the observation’s

value, ?o individuals are bound with individuals ?r

through ssn:observationResult property (line 9).

These ones in turn are related with individuals of class

ssn:ObservationValue (line 10), which are finally

related with the data value ?dv through

dul:hasDataValue property (line 11). The location of

observations ?loc is get through

inws:observationResultLocation property.

Finally, the list of observations is filtered out to include only

pH observations (line 13).

Output query results, i.e. (?qo, ?loc, ?dv) triples, are

consumed by Jess Tab functions for asserting new facts into

the knowledge base. make-instance and slot-

insert$ functions are used for creating new class indi-

viduals and inserting property values respectively. Namely,

for every outputted triple, a new observation instance of the

temporary class tmpObservation (a subclass of the

ssn:Observation class) is created.

tmpObservation holds the most current observation

data which are retracted after StreamJess rules process

them. Moreover, after retraction they are archived in the

StreamJess: A Stream Reasoning Framework for Water Quality Monitoring 245

ssn:Observation class in the form of historical data.

The newly created observation individual is further related

with ?qo, ?loc and ?dv values based on the structure

of the SSN and INWS metadata descriptions. The water

quality name ?qo i.e. pH, becomes related with the new

observation instance through the

ssn:qualityOfObservation data property. The new

observation instance also becomes related with ?loc

through observationResultLocation object proper-

ty. The location instance is of type Point of the basic geo

location vocabulary, which means that it possesses longi-

tude and latitude properties. A new ssn:SensorOutput

individual is also created for holding the observed value

?dv. It is linked with the observation instance through

ssn:observationResult property. Meanwhile, a new

instance of class ssn:ObservationValue is created to

be related with the previously created

ssn:SensorOutput individual through

ssn:hasValue property. The ?dv value is assigned to it

through dul:hasDataValue data property.

To implement the scenario of this example a monitoring

rule was designated for deciding the pH status and another

one for identifying the eventual sources of pollution. The

monitoring rule looks like follows (ontologies’ full IRI are

omitted for brevity):

1 (defrule classifyPHObsValues
2 (declare (salience 54))
3 (object (is-a ssn#ObservationValue)
4 (OBJECT ?ov)(DUL.owl#hasDataValue ?x))
5 (object (is-a ssn#SensorOutput)
6 (OBJECT ?so)(ssn#hasValue ?ov))
7 (object (is-a time#Instant)
8 (OBJECT ?ot)(time#inXSDDateTime ?time))
9 (object (is-a inws-core.owl#tmpObservation)
10 (OBJECT ?o)(ssn#observationResult ?so)
11 (inws-core.owl#observationResultLocation

?loc)(ssn#observationResultTime ?ot)

12 (ssn#qualityOfObservation ?qo&:(eq (in-

stance-name ?qo) inws-core.owl#pH)))

13 =>
14 (bind ?*r* (random))
15 (printout t "(StreamJess)")
16 (if (and (> ?x 4.5) (< ?x 9))then (and
17 (printout t "(" ?*r* ") pH status is

GOOD/HIGH" crlf "On: " ?time crlf "In: "

(instance-name ?loc) crlf)

18 (make-instance (str-cat "GoodHighPHStatus"

?*r*) of inws-

regulations.owl#GoodHighPHMeasurement map)

19 (slot-insert$ (str-cat "GoodHighPHStatus"

?*r*) inws-

core.owl#observationResultLocation 1 ?loc)

20 (slot-insert$ (str-cat "GoodHighPHStatus"

?*r*) ssn#observationResultTime 1 ot)

21 (slot-set ?loc

inws-regulations.owl#isPolluted FALSE))

22 else (and
23 (printout t "(" ?*r* ") pH status is

MODERATE" crlf "On: " ?time crlf "In: "

(instance-name ?loc) crlf)

24 (make-instance (str-cat "ModeratePHStatus"

?*r*) of inws-

regulations.owl#tmpModeratePHMeasurement

map)

25 (slot-insert$ (str-cat "ModeratePHStatus"

?*r*) inws-

core.owl#observationResultLocation 1 ?loc)

26 (slot-insert$ (str-cat "ModeratePHStatus"

?*r) ssn#observationResultTime 1 ?ot)

27 (slot-set ?loc

inws-regulations.owl#isPolluted TRUE)))

28 (make-instance (str-cat (instance-name ?o)
?*r*) of ssn#Observation map)

29 (slot-insert$ (str-cat (instance-name ?o)

?*r*) inws-

core.owl#observationResultLocation 1 ?loc)

30 (slot-insert$ (str-cat (instance-name ?o)

?*r*) ssn#observationResult 1 ?so)

31 (slot-insert$ (str-cat (instance-name ?o)

?*r*) ssn#observationResultTime 1 ?ot)

32 (slot-insert$ (str-cat (instance-name ?o)

?*r*) ssn#qualityOfObservation 1 inws-

core.owl#pH)

(unmake-instance ?o))

The first line serves for declaring rule’s definition and as-

serting its name. The second one is for declaring the rule

priority. The left hand side (LHS) of the rule (lines 3-12)

matches all pH observation individuals (?o) present in the

tmpObservation class. The right hand side (RHS) of the

rule (lines 14-31) asks if the matched observation value

(?x) falls between the interval of values 4.5 and 9. If so, the

observation is classified in “good/high” status (lines 16-21),

otherwise it becomes “moderate” (lines 22-27). After the

classification takes place the observation individual is stored

in the ssn:Observation class (lines 28-32) and the

temporary observation individual (?o) gets retracted from

the knowledge base (line 33).

Concretely, for each matched individual from temporary

observation class ?o, on the RHS a new random value is

generated to be used for new individual names (line 14). An

information string is printed out in the console to indicate

that the upcoming outputs are processed by StreamJess rules

(line 15). The code in line 16 asks whether the observation

value ?x falls between the allowed values for “good/high”

status. If so, the user gets informed about the status detected

at measurement site ?loc on time ?time. Next, a new

individual of GoodHighPHMeasurement class gets

created (line 18) and related with the location (line 19) and

time (line 20) of measurement. Moreover, the pollution

status of the measurement site ?loc is modified to “clean”

by changing its isPolluted value to “false” (line 21).

str-cat command is used to concatenate strings. If the if

condition specified on line 16 fails then the actions for spec-

ifying “moderate” status are activated. The steps to do this

are analogical to the ones used for specifying “good/high”

status. Namely, before setting the status of the measurement

site as “polluted” (line 27) the new status instance is created

to be of type tmpModeratePHMeasurement (line 24).

These instances are temporary because the investigation rule

246 E. Jajaga et al.

to find potential pH sources of pollution will make use of

them and after that will delete them. Prior to deletion the

status instance is stored as a new instance of

ModeratePHMeasurement class as historical data (lines

28-32) copying all ?o properties. The retraction is per-

formed for preventing investigations to be activated only

once. The pH investigation rule is described below:

1 (defrule findPHsourcesOfPollution
2 (declare (salience 553))
3 (object (is-a epa.owl#MeasurementSite)

(OBJECT ?loc) (inws-

pollutants.owl#hasSourcesOfPollution

$?sitepoll))

4 (object (is-a inws-

regulations.owl#tmpModeratePHMeasurement)

(OBJECT ?mob) (inws-

core.owl#observationResultLocation ?loc)

(ssn#observationResultTime ?ot))

5 =>
6 (bind ?*r* (random))
7 (make-instance (str-cat (instance-name

?mob) ?*r*) of inws-

regulations.owl#ModeratePHMeasurement map)

8 (slot-insert$ (str-cat (instance-name ?mob)
?*r*) inws-

core.owl#observationResultLocation 1 ?loc)

9 (slot-insert$ (str-cat (instance-name ?mob)
?*r*) ssn#observationResultTime 1 ?ot)

10 (foreach ?poll ?sitepoll
11 (foreach ?pollLsItem (slot-get ?poll inws-

pollutants.owl#potentialPollutant)

12 (if(eq (instance-name ?pollLsItem) inws-
core.owl#pH) then

13 (printout t "pH pollution source: "

(instance-name ?poll) " crlf)

14 (slot-insert$ (str-cat (instance-name

?mob) ?*r*) inws-

regulations.owl#foundPollutionSources 1

(instance-name ?poll)))))

15 (unmake-instance ?mob))

The rule binds the temporary “moderate” status pH observa-

tions into ?mob variable and gets its location ?loc and

time ?ot (line 4). The code in line 3 relates the list of

sources of pollution present on the measurement site ?loc

into the list variable $?sitepoll. The RHS of the rule

starts with archiving the temporary status instance ?mob

(lines 6-9). Namely, in absence of a Jess or Jess Tab mecha-

nism to change the instance class assignment, the temporary

status instance is copied in a new instance of class

ModeratePHMeasurement. Afterwards, the list mem-

bers of ?sitepoll is iterated (line 10) to match only

those sources of pollution which could increase pH dis-

charges (lines 11-12). Namely, for each source of pollution

in ?sitepoll i.e. present on the measurement site, its

potential pollutants list ?pollLsItem is checked if it

includes pH. The matching one’s name will be printed out

(line 13). As per saving historical data the archived status

instance gets related with the list of pollution sources

through foundPollutionSources property (line 14).

Finally, the temporary status instance ?mob gets discarded

from the knowledge base. An example output of Example 1

is illustrated in Figure 4. As can be observed, C-SPARQL

query IndObservations has produced three output

results. Two of these results (#1 and #3) have been classi-

fied with “good/high” status by rule

classifyPHObsValues, while the remaining one (#2)

with “moderate” status. Since the result #2 has been classi-

fied as a critical status the investigation rule

findPHsourcesOfPollution has fired and identified

that potential source of the pollution is “urban storm water

discharges” on site ms11.

Figure 4. An output excerpt of the running Example 1

5.2. Example 2: Biochemical Oxygen Demand (BOD5)

observations

A WFD rule for classifying - BOD5 observations is as fol-

lows: If BOD5 measurements in mg O2/l is less than 1.3

(mean), then river belongs to “high” status of oxygen condi-

tion; if it is less than 1.5 then river belongs to “good” status

of oxygen condition; otherwise the river belongs to “moder-

ate” status of oxygen condition (Statutory Instruments,

2011). Potential sources of pollution from which BOD5

discharges could arise include: contaminated land, farm

wastes and silage, fish farming, effluent discharges from

sewage treatment works, landfill sites and urban storm wa-

ter discharges (Foundation for Water Research, 2005).

The C-SPARQL query to calculate the water quality ob-

served average value on each window is given below:

1 REGISTER QUERY AvgObservations AS

...

5 SELECT ?qo ?loc (AVG(?dv) AS ?avg)

6 FROM STREAM <http://inwatersense.uni-

pr.edu/stream> [RANGE 20s STEP 20s]

...

13 FILTER (?qo != inws:pH)

...

15 GROUP BY ?qo ?loc

This query is similar to IndObservations query de-

scribed previously. The omitted lines are the same. As op-

posed to it, this query filters the RDF streams to include all

but those of pH observations (line 13). Moreover, it uses

aggregate functions such as AVG (line 5) to calculate the

average value of observations which are firstly grouped by

water quality name and then by location of measurement

StreamJess: A Stream Reasoning Framework for Water Quality Monitoring 247

(line 15). It is arbitrary set to run every 20 seconds sliding

the window by 20 seconds (line 6).

Similar to Example 1, the output query results, i.e. (?qo,

?loc, ?avg) triples, are consumed by Jess Tab functions

to create new tmpObservation instances. Afterwards,

the following monitoring rule, similar to

classifyPHObsValues, classifies BOD5 observations:

1 (defrule classifyBOD5ObsValues

...

12(ssn#qualityOfObservation ?qo&:(eq (in-

stance-name ?qo)(instance-name inws-

core.owl#BOD))))

=>

...

16 (if (and (< ?x 1.5) (> ?x 1.3)) then (and

17 (printout t "(" ?*r* ") BOD status is GOOD"

crlf "On: " ?time crlf "In: " (instance-

name ?loc) crlf)

18 (make-instance (str-cat "GoodBODStatus"

?*r*) of inws-

regulations.owl#GoodBODMeasurement map)

19 (slot-insert$ (str-cat "GoodBODStatus"

?*r*) inws-

core.owl#observationResultLocation 1 ?loc)

 ...

20 (slot-insert$ (str-cat "GoodBODStatus"

?*r*) ssn#observationResultTime 1 ?ot)

...

22 (if (< ?x 1.3) then <HIGH status classifi-

cation code here>)

23 (if (> ?x 1.5) then <MODERATE status clas-

sification code here>))

Similarly to the rule classifyPHObsValues lines 3-12

bind BOD5 observation data present in the temporary class

tmpObservation with their corresponding variables.

Lines 16-20 encode the semantics of the expression “if it is

less than 1.5 then river belongs to “good” status of oxygen

condition” from the example statement. Classification of

water bodies into “high” (line 22) and “moderate” (line 23)

status is omitted because it’s analogical with lines 16-20

with the appropriate change on the name of the status, the

corresponding class name and the setting of the pollution

status of the site.

The streams processed by the C-SPARQL query

AvgObservations will result in zero or many BOD5

observations. The number of BOD5 observations will de-

pend on the number of measurement sites. For example, as

illustrated in Figure 5, C-SPARQL processing of RDF

streams has resulted with 3 new observations on 3 meas-

urement sites: ms10, ms11 and ms12. Two observations

have been classified as of “moderate” status (Figure 5 line

#1 and #2) and one of “high” status (Figure 5 #3).

Whenever a critical i.e. “moderate” BOD5 measurement is

detected the following investigation rule to detect BOD5

potential sources of pollution is activated:

1 (defrule findBOD5SourcesOfPollution

...

=>

...

7 (make-instance (str-cat (instance-name

?mob) ?*r*) of inws-

regulations.owl#ModerateBODMeasurement map)

...

12 (if(eq (instance-name ?pollLsItem) inws-

core.owl#BOD) then

13 (printout t "BOD pollution source: " (in-

stance-name ?poll) crlf)

...

Similar to findPHsourcesOfPollution rule, this one

will cause the Rete engine to detect newly asserted individ-

uals of tmpModerateBODMeasurement on a specified

measurement site. In fact, the LHS of the rules is the same.

It will get the sources of pollution on that site which in turn

are filtered out to include only BOD5 potential pollutants

(lines 9-13). Each of the matched sources of pollution will

be printed out in the console as shown in observation #1 and

#2 in Figure 5. Namely, a “moderate” BOD5 status is de-

tected on sites ms11 and ms10. Potential sources of pollu-

tion include urban storm water discharges and fish farming

on site ms11 while urban storm water is potential source of

BOD5 discharges on site ms10.

Figure 5. An output excerpt of the running Example 2

5.3. Example 3: The ‘undetermined status’

NAF feature is enabled in the stream processing level. Re-

call sub section 2.1 example of assigning the ‘undetermined

status’ to measurement sites to which the data are missing.

The SPARQL support for NAF was utilized as described in

the following query.

REGISTER STREAM undefinedMeasurmentSites AS

PREFIX inwsp: <http://inwatersense.uni-

pr.edu/ontologies/inws-pollutants.owl#>

PREFIX rdf: < http://www.w3.org/1999/02/22-
rdf-syntax-ns#>

PREFIX twcc:

<http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#>

SELECT ?ms

FROM STREAM <http://inwatersense.uni-

pr.edu/stream> [RANGE 60s STEP 60s]

FROM <http://inwatersense.uni-

pr.edu/ontologies/data.rdf>

248 E. Jajaga et al.

WHERE {

?ms rdf:type twcc:MeasurementSite

OPTIONAL { ?ms inwsp:isPolluted ?tf } .
FILTER (!BOUND(?tf))

}

After (C-SPARQL) processing and (Jess) reasoning on each

observation instance a measurement site will be related with

a “true” or “false” value through isPolluted property.

This query will match the remaining measurement sites,

present in the background knowledge base (data.rdf

file), for which no pollution status is recorded. The query is

arbitrarily set to run every minute. On each query output

result the matching measurement sites’ isPolluted
status is set to ‘undefined’ through Jess Tab make-

instance construct.

6 Related Works

Two main strategies exist for systems combining ontologies

with rules: hybrid and homogeneous approaches (Jajaga et

al., 2013; Eiter et al., 2006). In the former one, also called

loosely-coupled approach, the reasoning is done by interfac-

ing existing rule reasoner with existing ontology reasoner,

while in the latter one, also called tightly-coupled approach,

both ontologies and rules are embedded into the same logi-

cal language without making a priori distinction between the

rule predicates and the ontology predicates (Eiter et al.,

2006).

6.1. Hybrid approaches

Hybrid approaches layer different non-DL rule systems on

top of DL ontologies like: production rules, CEP, LP, an-

swer set programming (ASP), etc. In the literature this ap-

proach is also referred to as, integration of ontologies and

rules with strict semantic separation (Eiter et al., 2006). In

our previous work (Jajaga et al., 2013), we described in

more detail about each one of these approaches and their

pros and cons. In general, hybrid solutions have achieved

the desired system behavior while main drawbacks include:

translation and reasoner issues and side-effects occurrence.

The first approaches combining ontologies with production

rules are described in (Sottara et al., 2012; Chau, 2007).

Sottara et al. (2012) model a hybrid Environmental Decision

Support System (EDSS) for Waste-Water Treatment Plants

(WWTP). As an application of production rules they infer

invalid NO3 measurement values. They argue that the

WWTP domain should be modeled through ontologies, for

modeling sensor data, paired with decision-making rules,

for processing incoming sensor data and recommending

actions to be taken. Another system implemented in terms

of production rules has been designed by Chau (2007) in the

domain of water quality modeling. Namely, the system sim-

ulates human expertise during the problem solving of

coastal hydraulic and transport processes. Both forward-

chaining and backward-chaining are used collectively dur-

ing the inference process Chau (2007). Even though that

these approaches, together with our previous work (Jajaga et

al., 2015) argue that pairing ontologies with production

rules provides a fruitful solution, they do not make any dis-

tinction between stream and static data. As such, they do not

implement the window feature.

StreamRule (Mileo et al., 2013) represents the pioneer of

coupling stream processing systems with ASP non-

monotonic reasoning. Even though the approach is still

much more prototypical it demonstrates how non-monotonic

and time-aware reasoning can be integrated into a unique

platform for stream data reasoning. Similarly to our ap-

proach, the continuous rule feature is implemented through

separate steps. Namely, stream filtering and aggregation is

done through a stream query processor such as CQELS (Le-

Phuoc et al., 2011), while OClingo (Gebser et al., 2013) is

used to enable non-monotonic reasoning. In StreamJess we

use C-SPARQL for filtering and aggregation purposes,

while non-monotonic reasoning is achieved through Jess

rules and Jess Tab functions. Even though that CQELS out-

performs C-SPARQL (Le-Phuoc et al., 2013), we preferred

C-SPARQL following its advantage to use nested aggrega-

tions and negation (Lanzanasto, 2009; Le-Phuoc et al.,

2012). Moreover, we plan to support temporal operators,

which lack any support in CQELS (Lanzanasto, 2009). The

main distinction of the stream reasoning component be-

tween StreamRule and StreamJess fall on the strategy of the

inference process. Namely, OClingo, as LP-based approach,

follows the backward chaining approach. It means to start

from the conclusion of the rule and try to match the facts of

the rule’s condition part. Jess uses the Rete algorithm

(Forgy, 1982) to do fast pattern matching, which is natively

forward chaining strategy. Even though the algorithm is

ideally suited for complex event detection, it does not sup-

port temporal reasoning (Walzer et al., 2008). Moreover, it

saves the states between cycles, which is not preferred in

situations when most of the data change. However, its ex-

tensions are in place to support stream reasoning e.g.

(Walzer et al., 2008), (Komazec and Cerri, 2011) and

(Schmidt et al., 2008). Jess also supports backward chain-

ing, which is effectively simulated in terms of forward

chaining rules (Hill, 2003). The forward chaining technique

starts from the rule’s condition part and finds the facts satis-

fying the rule’s conclusion. Both approaches have their pros

and cons: backward chaining is more memory efficient

while forward chaining is faster but consumes more

memory (Hardy, 2013). We decided to use Jess because of

the ability to use both strategies. Regarding the implement-

ed features StreamRule lacks the historical data manage-

ment component, which is one of the key requirements of

SR tools (Margara et al., 2014). StreamJess keeps evidence

of every previous environment state. For example, one can

query the INWS ontology for a particular measurement

site’s pollution status of the past. OClingo feeds back the

reasoning results into Java runtime for further processing or

display, while in StreamJess, the results are also deployed

back into the knowledge base and thus the memory gets

released and the data are available for query and retrieval.

StreamJess: A Stream Reasoning Framework for Water Quality Monitoring 249

This was implemented through the Jess Tab’s save-project

function, which is called after processing each C-SPARQL

window or alternatively be set to run periodically.

Recently, Ali et al. (2016) describe the descendant of

StreamRule, which support C-SPARQL aside of CQELS.

The system supports reasoning even in incomplete infor-

mation cases through NAF, but like StreamRule it does not

support historical data management. The SPARQL support

of NAF was utilized in StreamJess to complement the diffi-

culties for enabling NAF in Jess. Moreover, the reasoning

results are returned as a JSON object to the corresponding

web socket clients, while in StreamJess the reasoning re-

sults are returned as standard RDF data populating corre-

sponding ontology classes. Their stream reasoning compo-

nent is tested only with small amounts of input data. Our

initial experimental results on StreamJess show better per-

formance than the OClingo component implemented in

StreamRule and (Ali et al., 2016) for small inputs, while

system’s performance evaluation for larger inputs is part of

our future works. Jess is memory-intensive application, but

recent Java Virtual Machines include flexible and configu-

rable garbage collection subsystem which is responsible for

finding and deleting unused objects (Hill, 2003). As argued

by Hill (2003), the adjustment of two parameters: heap size

and the object nursery size, has resulted with an improved

25% better performance.

Rscale (Liebig and Opitz, 2011) is another industrially-

approved reasoning system which utilizes OWL 2 RL lan-

guage profile to infer new knowledge. It enables incremen-

tal reasoning, non-monotonic and closed-world reasoning

through translation of facts and rules into SQL tables and

queries respectively. However, it does not support time-

aware reasoning.

ETALIS (Anicic et al., 2010) together with EP-SPARQL

(Anicic et al., 2011) enables CEP with stream reasoning.

Even though ETALIS offers reasoning on time and location

spaces it does not implement the windows feature. Time-

based windows are supported through its wrapper EP-

SPARQL, but complicated aggregations within windows are

not supported (Le-Phuoc et al., 2012). Moreover, there is no

support for triple-based windows too.

6.2. Semantic Web approaches

In the literature this approach is also referred to as interac-

tion of ontologies and rules with tight semantic integration

(Eiter et al., 2006). Even though the tight coupling of the

model the rule language has distinct advantages e.g. no

mapping mechanism is required between them, these ap-

proaches mainly suffer from limited expressiveness or de-

cidability (Eiter et al., 2006). Thus, to date, there is not a

tight-coupled approach which supports all the stream rea-

soning requirements. Approaches described by Keßler et al.

(2009) and Wei and Barnaghi (2009) do not make any dis-

tinction between stream and static data, while also lack im-

plementation. They prove that SWRL can be used to infer

new and approximate knowledge in stream data domains.

However, their approach does not consider time-aware and

non-monotonic reasoning. Recently, a SPARQL extension

(Anderson et al., 2016) that uses CONSTRUCT/WHERE

clauses to express rules has been proposed. Yet again this

approach does not consider non-monotonic reasoning. The

works presented by Albeladi et al. (2015) Tallevi-Diotallevi

et al. (2013) describe a Rete-based (Forgy, 1982) approach

of RDFS entailment rules for producing data in a continuous

manner. Although supporting time-aware and incremental

reasoning, the approach does not deal with non-monotonic

and closed-world reasoning. JNOMO (Calero et al., 2012)

shows how SWRL can be extended to embrace non-

monotonicity, CWA and NAF. Namely, NotExist operator

is defined to “close” the world and to enable fact retraction.

However, it does not deal with stream data, while inclusion

of temporal reasoning is envisioned as per future works.

7 Conclusion

Until recently most of the SR research has been dedicated

on ontology and query processing developments. Dealing

with Big Data issues through query processing is not

enough. Our work goes beyond the query processing

achievements and thus focusing on rule level implications of

stream data. SWRL, on its own, lacks the required expres-

sivity level to reason over stream data. As a result, we built

StreamJess, a production rule system capable of expressive

reasoning over stream data. It layers Jess on top of C-

SPARQL to enable time-aware, closed-world and non-

monotonic reasoning on stream data domains. Jess and Jess

Tab functions were used to enable non-monotonic reason-

ing. The system was validated in a WQM case study by

running multiple C-SPARQL queries and Jess rules at the

same time over the same RDF streams. Example 1 demon-

strated how C-SPARQL queries can be used to filter RDF

streams in time windows. The outputted results were pro-

cessed by Jess rules to classify individual pH observations

into appropriate WFD statuses. Furthermore, an investiga-

tion rule fired in case of critical status detection and identi-

fied the potential sources of pollution. Example 2 illustrated

how WFD classification can be realized based on the aver-

age value of the observations. Except filtering the RDF

streams were aggregated and then grouped by measurement

site to classify and investigate BOD5 observations.

The INWS ontology was also extended to meet the require-

ments for investigating sources of pollution. We believe that

maintaining materializations on rules following ontology

changes do not differ for stream data domains. However, a

deeper research in this direction remains per future work.

We also plan to compare StreamJess against the envisioned

pure Semantic Web system (Jajaga and Ahmedi, 2015).

Furthermore, our future work also includes enabling tem-

poral operators (serial, sequence, etc.) on StreamJess.

250 E. Jajaga et al.

References

Ahmedi, L., Jajaga, E. and Ahmedi, F. (2013), ‘An ontology

framework for water quality management’ in Corcho, Ó.,

Henson, C. A. and Barnaghi, P. M. ed., SSN@ISWC, Syd-

ney, pp. 35-50.

Ahmedi, L., Sejdiu, B., Bytyçi, E. and Ahmedi, F. (2015),

‘An Integrated Web Portal for Water Quality Monitoring

through Wireless Sensor Networks’, International Journal

of Web Portals (IJWP), Vol. 7 No. 1, pp. 28-46.

Albeladi, R., Martinez, K. and Gibbins, N. (2015), ‘Incre-

mental rule-based reasoning over RDF streams: An expres-

sion of interest’, in RDF Stream Processing Workshop at

the 12th Extended Semantic Web Conference, Portoroz,

Slovenia.

Anicic, D., Fodor, P., Rudolph S., and Stojanovic, N.

(2011), ‘EP-SPARQL: a unified language for event pro-

cessing and stream reasoning’ in WWW 2011, pp. 635–644.

Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E. and

Grossniklaus, M. (2010), ‘C-SPARQL: a continuous query

language for RDF data streams’, International Journal of

Semantic Computing, Vol. 04 No. 01, pp. 3–25.

Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E. and

Grossniklaus, M. (2010) ‘Incremental reasoning on streams

and rich background knowledge’, in Proceedings of the

Extended Semantic Web Conf. (ESWC 2010), Heraklion,

Crete, Greece, pp.1-15.

Basic Geo (WGS84 lat/long) Vocabulary. [online]

http://www.w3.org/2003/01/geo/. (Accessed 7 June 2016).

Boley, H., Kifer, M., Pătrânjan, P.-L. and Polleres, A.

(2007), ‘Rule interchange on the web’, in Reasoning Web,

LNCS, Springer, Heidelberg, Vol. 4636, pp. 269–309.

Calero, J. M. A., Ortega, A. M., Perez, G. M., Blaya, J. A.

B. and Skarmeta, A. F. G. (2012), ‘A non-monotonic ex-

pressiveness extension on the semantic web rule language’,

Journal of Web Engineering, Vol. 11 No. 2, pp. 93–118.

Compton, M., Barnaghi, P., Bermudez, L., GarcíaCastro, R.,

Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson,

C. A., Herzog, A., Huang, V. A., Janowicz, K., Kelsey, W.

D., Phuoc, D. L., Lefort, L., Leggieri, M., Neuhaus, H.,

Nikolov, A., Page, K. R., Passant, A., Sheth, A. P. and Tay-

lor, K. (2012), ‘The SSN ontology of the W3C semantic

sensor network incubator group’, Journal of Web Semantics,

Vol. 17, pp. 25–32.

Della Valle, E., Ceri, S., Barbieri, D. F., Braga, D. and

Campi, A. (2008), ‘A first step towards stream reasoning’ in

Proceedings of Future Internet Symposium (FIS 08),

Springer, pp. 72–81.

Della Valle, E., Ceri, S., van Harmelen, F. and Fensel, D.

(2009), ‘It’s a streaming world! Reasoning upon rapidly

changing information’, in IEEE Intelligent Systems, Vol. 24

No. 6, pp. 83–89.

Environment Agency. (2011), Method statement for the

classification of surface water bodies, v2.0 (external re-

lease) [online], Monitoring Strategy v2.0, July 2011. (Ac-

cessed 7 June 2016).

Ermert, L. (2009), Comparing Jess and Esper for Event

Stream Processing. Bachelor Thesis, Faculty IV - depart-

ment computer science, Fachhochschule Hannover, Germa-

ny.

European Parliament and the Council of Europe. (2000)

Directive 2000/60/EC of 23 October 2000 establishing a

framework for Community action in the Field of water qual-

ity, O.J. L327/1.

Forgy, C. L. (1982), ‘Rete: A fast algorithm for the many

pattern/many object pattern match problem’, Artificial Intel-

ligence, Vol. 19, No. 1, pp. 17 – 37.

Foundation for Water Research. (2005) Sources of Pollution

[online], Information Note FWR-WFD16. https://www.pik-

potsdam.de/news/public-events/archiv/alter-net/former-

ss/2007/03-09.2007/straskrabova/literature/Pollutionsourcs-

WFD16-0.pdf. (Accessed 7 June 2016)

Gebser, M., Grote, T., Kaminski, R., Obermeier, P.,

Sabuncu, O. and Schaub, T. (2013), ‘Answer set program-

ming for stream reasoning’, in CoRR.

Grosof, B. N., Gandhe, M. D. and Finin, T. W. (2002),

‘SweetJess: Translating DamlRuleML to Jess’, in: Proceed-

ings of International Workshop on Rule Markup Languages

for Business Rules on the Semantic Web, held at 1st Interna-

tional Semantic Web Conference.

Gruber, T. R. (1993), ‘A translation approach to portable

ontologies’, in Knowledge Acquisition, Vol. 5 No. 2, pp.

199–220.

Hill, E. F. (2003), Jess in action: Java rule-based systems,

Manning Publications Co., Greenwich, CT.

Horridge M. and Bechhofer, S. (2009), ‘The OWL API: A

Java API for working with OWL 2 ontologies’, in 6th OWL

Experienced and Directions Workshop, Chantilly, Virginia.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,

Grosof, B. and Dean, M. (2004), SWRL: A Semantic Web

rule language combining OWL and RuleML. [online]

https://www.w3.org/Submission/SWRL/ (Accessed 7 June

2016)

InWaterSense project. [online] http://inwatersense.uni-

pr.edu/ (Accessed 7 June 2016).

INWS core ontology. [online] http://inwatersense.uni-

pr.edu/ontologies/inws-core.owl (Accessed 7 June 2016).

StreamJess: A Stream Reasoning Framework for Water Quality Monitoring 251

INWS pollutants ontology. [online] http://inwatersense.uni-

pr.edu/ontologies/inws-pollutants.owl (Accessed 7 June

2016).

INWS regulations ontology. [online] http://inwatersense.uni-

pr.edu/ontologies/inws-regulations.owl (Accessed 7 June

2016).

Jajaga, E., Ahmedi, L. and Abazi-Bexheti, L. (2013), ‘Se-

mantic Web trends on reasoning over sensor data’ in 8th

South East European Doctoral Student Conference, Greece,

pp. 284-293.

Jajaga, E., Ahmedi, L. and Ahmedi, F. (2015), ‘An Expert

System for Water Quality Monitoring Based on Ontology’,

in MTSR 2015: Proceedings of the 9th Metadata and Se-

mantics Research Conference, Manchester, UK, Vol. 544

pp. 89-100.

Jess Wiki: Jess Tab. [online]

http://www.jessrules.com/jesswiki/view?JessTab (Accessed

7 June 2016).

Keßler, C., Raubal M. and Wosniok, C. (2009), ‘Semantic

rules for context-aware geographical information retrieval’,

in EuroSSC 2009, LNCS, Springer, Vol. 5741, pp. 77–92.

Lanzanasto, N., Komazec, S. and Toma, I. (2009), Deliver-

able D4.8: Reasoning over real time data streams,

ENVISION Consortium.

Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter,

T. and Fink, M. (2012), ‘Linked stream data processing

engines: facts and figures’, in The Semantic Web–ISWC

2012, Springer, pp. 300–312.

Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J. and

Hauswirth, M. (2011) ‘A native and adaptive approach for

unified processing of linked streams and linked data’, in The

International Semantic Web Conference –ISWC 2011, pp.

370–388.

Liebig, T. and Opitz, M. (2011), ‘Reasoning over dynamic

data in expressive knowledge bases with Rscale’, in The

10th International Semantic Web Conference, Bonn, Ger-

many.

Margara, A., Urbani, J., van Harmelen, F. and Bal, H.

(2014), ‘Streaming the web: reasoning over dynamic data’

in Web Semantics: Science, Services and Agents on the

World Wide Web, 25(0), pp. 24–44.

McBride, B. (2004), ‘Jena: implementing the RDF model

and syntax specification’, in Proceedings at Semantic Web

Workshop (WWW).

Mileo, A., Abdelrahman, A., Policarpio, S. and Hauswirth,

M. (2013) ‘StreamRule: a nonmonotonic stream reasoning

system for the semantic web’, in RR 2013, LNCS, Springer,

Heidelberg, Vol. 7994, pp. 247–252.

O'Connor M. J. and Das, A. K. (2009) ‘SQWRL: a query

language for OWL’, in OWL: Experiences and Directions

(OWLED), 6th International Workshop, Chantilly, VA.

O'Connor, M. J., Knublauch, H., Tu, S. W., Grossof, B.,

Dean, M., Grosso, W. E. and Musen, M. A. (2005) ‘Sup-

porting rule system interoperability on the Semantic Web

with SWRL’, in 4th International Semantic Web Confer-

ence, Galway, Ireland, Springer Verlag, LNCS Vol. 3729,

pp. 974-986.

OWL time ontology. [online] http://www.w3.org/TR/owl-

time/ (Accessed 7 June 2016)

Statutory Instruments. (2009), European Communities Envi-

ronmental Objectives (Surface Waters) Regulations 2015

[online], S.I. No. 386 of 2015.

http://www.irishstatutebook.ie/eli/2015/si/386/made/en/pdf.

(Accessed 7 June 2016)

Tallevi-Diotallevi, S., Kotoulas, S., Foschini, L., Lecue F.

and Corradi (2013), ‘A Real-time urban monitoring in Dub-

lin using semantic and stream technologies’, in The Seman-

tic Web ISWC 2013, Vol. 8219 of Lecture Notes in Comput-

er Science, Springer Berlin Heidelberg, pp. 178–194.

Volz, R., Staab, S. and Motik, B. (2005), ‘Incrementally

maintaining materializations of ontologies stored in logic

databases’, Journal of Data Semantics II, Vol. 3360, pp. 1–

34.

Wang E. and Kim, Y. S. (2006), ‘A teaching strategies en-

gine using translation from SWRL to Jess’, in 8th Interna-

tional Conference on Intelligent Tutoring Systems, June 26-

30 2006, LNCS Vol. 4053, pp. 51-60.

Wei W. and Barnaghi, P. (2009), ‘Semantic annotation and

reasoning for sensor data’, in Smart Sensing and Context,

pp.66-76.

Zaniolo, C. (2012), ‘Logical foundations of continuous que-

ry languages for data streams’ in Proceedings of Datalog,

pp. 177–189.

Advancing Discovery in Science and Engineering. Compu-

ting Community Consortium. Spring 2011.

Luckham, D. and Roy Schulte, W. (2011), Event Processing

Glossary -Version 2.0. Event Processing Technical Society,

2nd edition.

Eiter, T., Ianni, G., Polleres, A., Schindlauer, R. and

Tompits, H. (2006), ‘Reasoning with Rules and Ontologies’,

in Reasoning Web, Second International Summer School

2006, Tutorial Lectures, LNCS, vol. 4126, Springer, pp. 93–

127.

Sottara, D., Bragaglia, S., Mello, P., Pulcini, D., Luccarini,

L., and Giunchi, D. (2012), ‘Ontologies, Rules, Workflow

and Predictive Models: Knowledge Assets for an EDSS, in

252 E. Jajaga et al.

International Environmental Modelling and Software Socie-

ty (iEMSs), 2012 International Congress on Environmental

Modelling and Software Managing Resources of a Limited

Planet, Sixth Biennial Meeting, Leipzig, Germany.

Chau, K. W. (2007), ‘An ontology-based knowledge man-

agement system for flow and water quality modeling’ in

Advances in Engineering Software, Vol. 38, no. 3, pp. 172-

181.

Walzer, K., Groch, M., and Breddin, T. (2008), ‘Time to the

Rescue – Supporting Temporal Reasoning in the Rete Algo-

rithm for Complex Event Processing’ in Proceedings of

19th Int. Conf. on Database and Expert Systems Applica-

tions, Springer-Verlag, pp. 635–642.

Komazec, S., and Cerri, D. (2011), ‘Towards Efficient

Schema-Enhanced Pattern Matching over RDF Data

Streams’ in 10th ISWC, Springer, Bonn, Germany.

Schmidt, K., Stuhmer, R., and Stojanovic, L. (2008),

‘Blending complex event processing with the rete algo-

rithm’ in 1st International workshop on Complex Event

Processing for the Future Internet colocated with the Future

Internet Symposium, CEUR Workshop Proceedings, Vol.

412.

Hardy, C. E. (2013), Stream Reasoning on Resource-

Limited Devices. University of Dublin, Dublin, United

Kingdom.

Ali, M. I., Ono, N., Kaysar, M., Shamszaman, Z. U., Pham,

T.-L., Gao, F., Griffin, K., and Mileo, A. (2016) ‘Real-time

Data Analytics and Event Detection for IoT-enabled Com-

munication Systems’, Journal of Web Semantics: Science,

Services and Agents on the World Wide Web.

Anicic, D., Fodor, P., Rudolph, S., Stuhmer, R., Stojanovic,

N., Studer, R. (2010), ‘A Rule-Based Language for Com-

plex Event Processing Reasoning’, in Proceedings of the

Fourth International Conference on Web reasoning and

rule systems, pp. 42-57, Springer-Verlag Berlin, Heidelberg.

Anderson, J., Athan T., and Paschke, A. (2016), ‘Rules and

RDF Streams’ - A Position Paper, in Proceedings of the

RuleML 2016 Challenge, Doctoral Consortium and Industry

Track hosted by the 10th International Web Rule Symposi-

um (RuleML 2016), New York, USA.

