
adfa, p. 1, 2016.

© Springer-Verlag Berlin Heidelberg 2016

StreamJess: Enabling Jess for Stream Data Reasoning

and the Water Domain Case

Edmond Jajaga1, Lule Ahmedi2, Figene Ahmedi3

 1 South East European University, Department of Computer Science

Ilindenska n. 335, 1200 Tetovë, Macedonia

e.jajaga@seeu.edu.mk
2 University of Prishtina, Department of Computer Engineering

Kodra e diellit pn, 10000 Prishtinë, Kosova

lule.ahmedi@uni-pr.edu
3 University of Prishtina, Department of Hydro-Technic

Kodra e diellit pn, 10000 Prishtinë, Kosova

figene.ahmedi@uni-pr.edu

Abstract. This paper introduces StreamJess, a Stream Reasoning system that

layers on top of a state of the art query processing system such as C-SPARQL

to enable closed-world, non-monotonic and time-aware reasoning with Jess

rules. The system is validated in the water quality monitoring domain by

demonstrating water bodies’ classification and pollution sources investigation.

Keywords: stream data, expert system, Semantic Web, rules, water quality

monitoring, ontologies

1 Introduction

Even though the Semantic Web technologies have been extensively used for model-

ling stream data domains, e.g. SSN ontology1, and for processing through SPARQL-

like extensions, e.g. C-SPARQL [1], EP-SPARQL [2], etc., the recommended rules

standards, SWRL and RIF, still remain not applicable in the domain of stream data

applications. As a result, the stream data knowledge bases have been merely coupled

with production rules, answer set programming or event processing systems [3]. In

the vision of building a unique Semantic Web platform for reasoning over stream

data, we have developed a production rules system, StreamJess, which layers Jess

rules to reason over our water quality monitoring (WQM) ontology named InWater-

Sense [4]. Jess supports closed-world and non-monotonic reasoning. However, ex-

tending Jess with stream data reasoning features is very expensive. Code could not be

optimized even for simple temporal operations over event-streams [5]. Thus, we pro-

pose a much simpler approach by coupling stream data processing features, supported

by state of the art Stream Reasoning (SR) query systems such as C-SPARQL, with

1 Semantic Sensor Network Ontology, http://purl.oclc.org/NET/ssnx/ssn

mailto:lule.ahmedi@uni-pr.edu
mailto:figene.ahmedi@uni-pr.edu

Jess’s reasoning abilities. C-SPARQL supports time-aware reasoning on stream data.

However, as a query language, it is not intended to have any effect on the underlying

ontology. In StreamJess we use Jess rules for populating the knowledge base.

Moreover, they enable data modifications i.e. non-monotonic reasoning and the tools

for archiving data. The system is validated with simulated data in the WQM domain,

but it is developed for use within the InWaterSense project2 with real data. The simu-

lator randomly generates observation data for an arbitrary number of 70 measurement

sites and 11 water quality parameters. A single sensor observation is arbitrarily set to

be produced every second and includes 6 RDF streams representing time, location,

device and quality of observation information. For example, in a 20 seconds window

size 120 tuples will be produced. Moreover, the system supports registering multiple

streamers to run concurrently.

2 Conceptual design and implementation

As depicted in Figure 1, StreamJess acts as a pipeline. Incoming RDF data streams,

e.g. sensor observed values, are firstly filtered out and eventually aggregated by C-

SPARQL queries. The query results are asserted into the knowledge base through

JessTab functions. The ABox changes will eventually cause to fire Jess rules, which

have been registered on application startup. The Jess engine inferences will be again

published onto the ontology. The processing and reasoning over incoming streams is

iterative for each window.

StreamJess is implemented as a Java console application. The application uses an

instance of jess.Rete which is created at system start up. It provides the central

access point of the application as it loads the ontology, builds the working memory,

holds the list of rules and offers the methods for doing CRUD operations over facts

[6]. Namely, Protégé functions of Jess in JessTab were used to manage with the

knowledge base. All ontology modules are imported and loaded at application start

up. Moreover, class instances are also mapped into the Jess’s working memory. Dif-

ferent stream data ontologies can be loaded into the system and appropriate C-

SPARQL queries and Jess rules can be defined to run over incoming data streams.

3 Validation

As a proof of concept, we have implemented StreamJess in a typical WQM scenario

based on WSN. Sensors in InWaterSense WQM system are deployed in different

measurement sites at different times. StreamJess will (1) classify the water body into

the appropriate status (good, high or moderate) according to WFD regulations [7, 8]

and (2) identify the potential sources of pollution in case of critical status detection. In

general, each water quality is monitored and investigated with a monitoring rule (1)

and an investigation one (2).

2 http://inwatersense.uni-pr.edu/

Fig. 1. StreamJess architecture

For brevity, we will demonstrate the case of Biochemical Oxygen Demand (BOD5)

and pH observations. Like most of water quality parameter observations, BOD5 ob-

servations are classified based on the average value of measurements within a time

interval while pH ones are considered one by one [8]. Two C-SPARQL queries are

deployed into the system to match each of the types of observations. Moreover, four

rules are deployed, one for monitoring and one for investigation of BOD5 observa-

tions and another couple for pH observations. After loading all start up components,

the user is asked to specify the window type of the queries. Namely, if he specifies

time-based windows then he is presented with another question for setting the win-

dow size in seconds. Otherwise, he may specify to use tuple-based windows by fur-

ther providing the number of tuples to be processed within a window. Each query

eventually outputs triples of values: the water quality name, the location of

measurements and the observed value i.e. the average value of BOD5 measurements

or individual pH measurements. Every output triple is mapped into a temporary

observation class. Furthermore, for each new incoming triple a new call to the Rete

method run() is invoked for doing rule-based reasoning. As illustrated in Figure 1,

the Jess engine runs the rules against the temporary observation facts, produced by C-

SPARQL, and it eventually activates the rule’s RHS actions. The inferred knowledge

forms another set of RDF data which is stored back into the ontology for further

reasoning. Namely, monitoring rules do the water quality classifications based on the

WFD regulation rules which general form looks like follows: {observation

details} => {classify and archive the observation}. In case a

critical status is detected, investigation rules act to identify the pollution source which

general form is: {moderate status observation} => {get and display

the sources of pollution present on the measurement site}.

An output of the running

example is illustrated in

Figure 2, where C-SPARQL

processing of RDF streams

has resulted with 3 new

observations on 3

measurement sites: ms10,

ms11 and ms12. Two

observations have been

classified as of “moderate”

status (line #1 and #2) and

one of “high” status (line

#3). Potential sources of

pollution include urban stromwater discharges and fish farming on site ms11 while

urban stormwater is potential source of BOD5 discharges on site ms10. An online

demo of StreamJess can be found on the following link http://inwatersense.uni-

pr.edu/streamjess/demo.html.

4 Conclusion

Until recently most of the SR research has been dedicated on ontology and stream

processing developments. Our work goes beyond the query processing achievements

and thus focusing on rule level implications of stream data reasoning. SWRL lacks

the required expressivity level to reason over stream data. Thus, we built StreamJess,

a production rule system supporting time-aware and non-monotonic reasoning.

5 References

1. Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL: a con-

tinuous query language for RDF data streams, J. of Semantic Computing, 4(1) 3–25 (2010)

2. Anicic, D., Fodor, P., Rudolph S., Stojanovic, N.: EP-SPARQL: a unified language for

event processing and stream reasoning. In: WWW 2011, pp. 635–644 (2011)

3. Jajaga, E., Ahmedi, L., Abazi-Bexheti, L.: Semantic Web trends on reasoning over sensor

data. In: 8th South East European Doctoral Student Conf., pp. 284-293. Greece (2013)

4. Ahmedi, L., Jajaga, E., Ahmedi, F.: An Ontology Framework for Water Quality Manage-

ment. In Corcho, Ó., Henson, C. A., Barnaghi, P. M. (eds.) SSN@ISWC. pp. 35-50. Syd-

ney (2013)

5. Ermert, L.: Comparing Jess and Esper for Event Stream Processing. Bachelor Thesis, Fac-

ulty IV - department of computer science, Fachhochschule Hannover, Germany (2009)

6. Hill, E. F. Jess in action: Java rule-based systems, Manning Publications Co., CT (2003)

7. Environment Agency. (2011) Method statement for the classification of surface water bod-

ies, v2.0 (external release) [online], Monitoring Strategy v2.0, July 2011.

8. Statutory Instruments. European Communities Environmental Objectives (Surface Waters)

Regulations 2015, S.I. No. 386 of 2015.

http://www.irishstatutebook.ie/eli/2015/si/386/made/en/pdf (2009)

Fig. 2. An excerpt of the output of the running example

http://www.irishstatutebook.ie/eli/2015/si/386/made/en/pdf

