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Abstract. One of the most challenging features of Semantic Web applications 

is the reasoning module. Based on the Semantic Web paradigm, the tendency of 

its community is to build applications with well known standards or 

recommendations. OWL and SWRL are the first to be considered while 

expressing data semantics. Their support of monotonic reasoning and open 

world assumption is not always fruitful on the domain of sensor data. Sensor 

data, which are the case of this study, are specific in terms of their dynamic 

nature. Addressing the reasoning issues over the gigantic flow of sensor data 

the community has considered different approaches mostly resulting by 

building hybrid systems. This paper outlines preliminary work on reasoning 

issues over sensor data while describing the approaches that have been taken so 

far focusing on the discipline of water quality management.  
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1 Introduction 

Semantic Web applications are growing day to day. Meanwhile Semantic Web 

standards are also maturing. Sensor rapid development and deployment in different 

disciplines including weather forecasting, water quality management, civic planning 

for traffic management etc. requires efficient machine communication. Many 

organizations and institutions have taken initiatives to take advantage from the 

synthesis of both “worlds” to provide semantics on different application domains. In 

2008, Kno.e.sis1 initiated a project for building Semantic Sensor Web assembling 

sensor metadata from all over the world. The initiative is aligned-well with 

standardization efforts of W3C and Open Geospatial Consortium (OGC), in particular 
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with Semantic Web2 and Semantic Web Enablement3 (SWE) activities, respectively. 

In fact, Semantic Sensor Web represents a synergy of both initiatives by semantic 

annotating of simple sensor data i.e. time, spatial and thematic data. In line with 

Semantic Sensor Web the W3C Semantic Sensor Network Incubator group (the SSN-

XG) recently produced an OWL 2 [11] ontology named SSN4 [4], which enhances 

OGC SWE simple spatial and temporal concepts with semantic annotation for 

analyzing and Linked Data publishing. The SSN ontology models sensor data in four 

main perspectives: sensor, observation, system and feature and property perspectives.  

Sensor data are an example of stream data which are rapidly changing data. These 

huge amounts of data need to be quickly consumed and reasoned over. For example, 

if a particular water quality parameter drops from its allowed threshold then this 

information needs to be captured quickly and an appropriate decision should follow. 

Sensors continually produce water quality parameter values. Historical and real-time 

data produced by sensors require a flexible knowledge management system. An area 

which deals with continues execution of queries over stream data is Data Stream 

Management Systems (DSMS). As indicated in [22] it lacks the ability to reason 

about complex tasks and lacks a protocol for wide publication. The Semantic Web 

fulfills these gaps but caching all the knowledge for rapidly changing information is 

inappropriate. Similar to DSMS is Complex Event Processing (CEP) which provides 

on-the-fly analysis of event streams, but cannot perform reasoning tasks [15]. 

Following the pros and cons of DSMS and CEP a new research area has been 

investigated by the community, namely Stream Reasoning [22]. Stream Reasoning 

integrates data streams, the Semantic Web and reasoning techniques into a unique 

platform. Unlike in a traditional reasoning environment, where all the information is 

taken into account, in stream reasoning there are two concepts which indicate the 

distinguished approach. The window concept restricts the reasoning to a certain subset 

of statements recently observed on the stream while previous information is ignored, 

furthermore continuous processing means continuous evaluation of streams against 

the knowledge base which is constantly changing. 

In general, querying RDF triples of stream data has been leveraged with different 

SPARQL extensions like: Streaming SPARQL [24], Continuous SPARQL (C-

SPARQL) [23] and Time-Annotated SPARQL [25].  

This study is focused on the Semantic Web rule layer. State-of-the-art rule-based 

systems for dealing with sensor data reasoning are mainly: 

• Hybrid systems e.g. CEP with Semantic Web in [14] and [15], production 

rules with Semantic Web in [13] and [27].  

• Pure Semantic Web rule systems as given in [5], [6] and [21], but which 

do not deal with the streaming nature of sensor data.      

This paper is organized as follows. Section 2 presents the current trends on 

ontology and query processing for sensor networks. Section 3 describes the current 

state-of-the-art of rule-based implementations with focus on sensor application areas. 
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The main discussion takes place on Section 4. Finally, the paper is concluded with a 

discussions section. 

2 Ontologies and Queries 

Ontologies are defined as formal specifications of a shared conceptualization [19]. 

Because of its knowledge reuse and sharing, the ontological knowledge model has 

been widely leveraged for representing wireless sensor networks (WSNs). One of the 

first WSNs which has seen benefits from including the ontological model into its 

knowledge base is OntoWEDDS [9], a decision-support system for wastewater 

management, which extends its previous version’s case-based and rule-based 

reasoning with the WaWO [10] ontology. The evaluation results have yielded an 

improvement of 70-100% successful diagnosis and no impasse situations including 

WaWO reasoning, against 60-70% and 10 out of 57 impasse situations without using 

it.  

Interoperability between sensors and sensing systems was enabled with the 

development of the SSN ontology. Its foundation is based on the DOLCE-UltraLight5 

(DUL) ontology. To model a knowledge base of sensor networks one would include 

SSN interested features extending it with units, location, feature and time ontologies 

[4]. Additional classes and properties can be defined and added to model domain 

specific knowledge. 

There are also initiatives dealing with sensor streaming data on query level. In 

[26], Shahriar et al. propose a smart query system considering both streaming data 

and historical data from marine sensor networks. ES3N [18] and C-SPARQL [23] are 

also dealing with sensor stream data. C-SPARQL is an extension of SPARQL for 

supporting stream data querying. Query processing is an important issue on the 

Semantic Sensor Web [26], but it is out of the scope of this paper. Instead, we focus 

on rule layer reasoning. 

3 Rule-Based Reasoning 

As claimed in the previous section almost every sensor network knowledge base is 

modeled through OWL ontologies. The Semantic Sensor Web foundation has enabled 

semantic enrichment of simple sensor data through these ontologies. However, 

inferring new and implicit knowledge from known facts represented in ontological 

terms is enabled through a powerful mechanism known as rule-based reasoning. In 

general, the limited expressivity of the Sematic Web Rule Layer (SWRL) [26], which 

currently has the status of W3C submission, has forced the community to consider 

hybrid systems while keeping the knowledge base modeled in the form of ontologies. 

Specifically, for the domain of sensor data an obstacle appears from the continuous 

flow of data. These data need to be consumed quickly by the reasoning engine which 
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in turn will efficiently infer new knowledge by combining these data with background 

knowledge. Because of this nature when trying to infer logical consequences from 

sensor data, different rule systems are considered by the community. In general, rule 

systems fall into three categories: first-order, logic programming (LP), and action 

rules [29]. In the rest of this section we will briefly describe the main rule systems 

developed for modeling water quality management systems. 

3.1 Association Rule Mining 

Association rule mining is about finding frequent paths and correlations between 

items in the database. In [8], Ding et al. have proposed a framework for association 

rule mining and scoping in spatial datasets [8]. For example, they have used an 

association rule to infer dangerous arsenic levels with 100% confidence.  

As envisioned by Bhatnagar and Kochhar [7], association rule mining performing 

on stream data are increasingly in need. They are employed in the estimation of 

missing data streams of data generated by sensors and frequency estimation of 

internet packet streams [7].  

Association rule mining is more concerned with predicting what may happen in the 

future, while our aim is to deal with the current state of water quality. 

3.2 Production Rules 

Production rules are IF-THEN rules which fire actions (the THEN part) based on the 

precondition (the IF part) matching the current “state of the world”. In [27], the 

authors model a hybrid Environmental Decision Support System (EDSS) for Waste-

Water Treatment Plants (WWTP). As an example of production rules they infer 

invalid NO3 measurement values. They argue that the WWTP domain should be 

modeled through ontologies, for modeling sensor data, paired with decision-making 

rules, for processing incoming sensor data and recommending actions to be taken.  

Another system implemented in terms of production rules has been designed by 

Chau [13] in the domain of water quality modeling. Namely, the system simulates 

human expertise during the problem solving of coastal hydraulic and transport 

processes. Both forward-chaining and backward-chaining are used collectively during 

the inference process [13]. 

The W3C in 2005 has created the Rule Interchange Format (RIF)6, a standard for 

rule exchange, with one of its dialects RIF-PRD7 implementing production rules. 

As proved in [27] production rules can be efficiently employed on a hybrid model 

for dealing with sensor networks. Production rules can modify and retract knowledge 

base facts. RIF-PRD enables interoperability of different rule systems with Semantic 

Web standards [29]. However, the sensor networks community is committed to 

Semantic Web approach, which standards (e.g. RDF, OWL) embrace monotonic 

inference only. 
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3.3 Event Processing 

Another hybrid approach which deals with sensor data reasoning is using OWL 

ontologies and CEP, which is an area similar to Stream Reasoning. CEP provides on-

the-fly real-time processing of streams of atomic events (e.g. sensor readings) [14], 

[15]. Taylor and Leidinger  [16] translate the whole OWL ontology, which models the 

event definition and optimization and extends an early version of the SSN ontology, 

into CEP statements for processing in an event processing engine. Unlike this 

approach, Anicic et al. [15] have taken the advantage of both “worlds” synthesizing 

the ability of CEP systems to process real-time complex events within multiple 

streams of atomic occurrences and the Semantic Web i.e. ontological ability to 

effectively handle background knowledge and perform reasoning. The later approach 

has resulted in a new rule-based language ETALIS [14] and EP-SPARQL [15], a 

query language extending the SPARQL language with event processing and stream 

reasoning capabilities. Both are implemented in Prolog, which has its foundations in 

LP.  

All in all, CEP systems are very useful while dealing with real-time detection of 

sequential events e.g. if X water quality parameter drops from its allowed threshold, 

then another Y water quality parameter should be measured and if it is lower (or 

greater) than some constant a, than the river will be classified as ‘polluted’ and a 

water expert should be alerted. However, CEP cannot be used as a standalone system 

for reasoning in sensor networks. In fact, they lack the reasoning module, which is 

complemented by Semantic Web as it is the case with ETALIS [14]. 

3.4 Semantic Web 

Dealing with sensor data, a pure Semantic Web approach has been implemented by 

Keßler et al. [5]. They have leveraged the SWRL’s ability to express free variables 

and the use of its built-ins for modeling mathematical functions which has fulfilled 

the OWL’s lack of mathematical processing capabilities. The approach is tested for 

geographical information retrieval (GIR) task for recommending personalized surf 

spots based on user location and preferences. A similar approach is taken by Wei and 

Barnaghi [6] who demonstrate how rule-based reasoning can be performed over 

sensor observation and measurement data within the terms of Semantic Sensor Web. 

They emphasize the ability of rules not just to infer accurate but also approximate 

knowledge. 

Approaches [5] and [6] have proved that expressing SWRL rules in the domain of 

sensor data is feasible. However, they lack implementation and do not deal with 

reasoning obstacles i.e. monotonicity and open world assumption and their 

implications. These will be addressed in more detail in the next section. 

Henson et al. [21] have used the Jena Semantic Web Framework [12] as an engine 

for reasoning with rules implemented for Semantic Sensor Web on weather domain. 

Using Jena rules they infer new knowledge about sensor observation data and link the 

newly generated relations with original observation time and location data. This 



approach suffers from the monotonicity issue, since Jena supports monotonic 

inference by default. 

4 Discussion 

Semantic Sensor Web enables semantic sharing and reasoning over sensor data spread 

all over the world. Inferring new knowledge from these data represents a huge 

improvement. However, this achievement cannot be easily obtained, because of the 

streaming nature of sensor data. During our previous works in [1] and [2], attempting 

to implement a database normalization tool through Semantic Web technologies we 

have encountered different issues on the ontological and rule level. OWL and 

SWRL’s open world assumption and monotonic reasoning implied difficulties while 

dealing with negation as failure, classical negation, knowledge base modifications and 

disjunction. We think we will encounter the same reasoning challenges as sensor 

networks community is committed to Semantic Web,  and Description Logic (DL), on 

which are based Semantic Web formal foundations, is the one to blame for this. 

Because of this inadequacy of DL, the preferred implementation has often been to use 

LP instead. As an example, ETALIS [14] is a rule-based system which reasons over 

sensor data and it is implemented in Prolog, which is a LP language. 

4.1 Streaming Nature of Sensor Data 

Wei and Barnaghi [6] and Keßler et al. [5] represent how SWRL reasoning can be 

effectively leveraged in Semantic Sensor Web. Henson et al. [21] use Jena rules [12] 

to infer new knowledge from sensor observation data. All these approaches do not 

consider the streaming nature of sensor data and thus the continual modification of 

sensor outputs. As envisioned by Barbieri et al. [28], because Semantic Web is still 

focusing on static data the continuous processing of data streams together with rich 

background knowledge, requires specialized reasoners. As a result, they have 

developed C-SPARQL to enable querying over stream data in combination with static 

background knowledge. We envision a need for a rule system which will deal with 

rapid flow of sensor data in combination with static knowledge. Perhaps a similar 

approach to Barbieri et al. [23] should be considered by SWRL developers to enable 

continues execution of rules over sensor data. 

4.2 Open World Assumption and Negation As Failure 

The open world assumption deals with the completeness of the knowledge about a 

particular domain. In contrast to closed world assumption where the absence of a fact 

will return false, in open world semantics what is not known is undefined. For 

example, one cannot be sure that a particular measurement site is not polluted just 

because the water quality parameters are within their allowed thresholds. If a property 

stating that a measurement site is not polluted is absent then it does not mean that this 



property does not exist. This uncertainty makes it difficult to consider pure Semantic 

Web approaches. As a consequence of open world assumption we cannot assume the 

negation as failure. Negation as failure means that we can infer not P if we fail to 

prove every possible proof of P. For example, water temperature should not reach the 

rates greater than 1.5°C plus ambient temperature for general conditions. Expressing 

this rule is not possible in DL, because of not supporting the negation as failure. 

LP and production rules approaches have the advantages of supporting closed 

world assumption with negation as failure. In this manner their knowledge is defined. 

This is why the sensor networks community has implemented a hybrid Semantic Web 

approach, layering closed world reasoning on top of open world assumption i.e. 

OWL. In general, CEP is attractive, but we do not have any basis for confidence in 

how it works within a system making mixed assumptions about open and closed 

worlds. A possible approach is using query languages adopting closed world 

assumption, which are out of the scope of this discussion. Instead, we are focused on 

rule-based reasoning. 

4.3 Monotonicity 

OWL and SWRL support monotonic inference only i.e. earlier conclusions cannot be 

invalidated. Dealing with sensor data, we agree with Keßler et al. [5], who state that 

the same reasoning steps may lead to different results, thus the problem of 

monotonicity need to be addressed.  

Let’s consider the following example:  

A sensor node, which is a collection of sensing devices (e.g. sensor probes) placed 

in an observation point of the river, will report values about water quality parameters 

which are within the allowed threshold. So, the sensor node will be classified as 

“clean”. Suddenly, a parameter drops from its allowed threshold thus the sensor 

node should be classified as “polluted”. 

Because of the monotonic inference, the sensor node firstly asserted as “clean” 

cannot be later modified as “polluted”. Additionally, as indicated in [22] the windows 

opened over streams can determine changes in the static information sources. This 

inadequacy has forced the sensor networks community to enable nonmonotonic 

reasoning through hybrid approaches described in the previous section. They have 

layered LP e.g. Prolog system, or production rule systems reasoning with updated 

working memory, to enable nonmonotonic inference. 

5 Conclusion 

In this paper we described current trends on representing sensor data with semantic 

technologies and their pros and cons. Because of the streaming nature of sensor data 

the community has mainly taken two approaches: building a hybrid system or a pure 

Semantic Web system. Both approaches prove that the Semantic Web rule layer lacks 

the capabilities needed to efficiently reason over sensor data. This is due to the issues 

of open world semantics and monotonicity. With some examples from the domain of 



water quality management we have demonstrated the inability of a pure Semantic 

Web approach. Because of this shortage the sensor networks community has 

integrated ontologies with closed world and nonmonotonic reasoning. 
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