
C-SWRL: SWRL for Reasoning over Stream Data

Edmond Jajaga

Department of Computer Science

South East European University

Tetovë, Macedonia

e.jajaga@seeu.edu.mk

Lule Ahmedi

Department of Computer Engineering

University of Prishtina

Prishtinë, Kosova

lule.ahmedi@uni-pr.edu

Abstract—Semantic technologies have been extensively used for

integrating stream data applications. However, using SWRL,

which has become the de facto standard rule language in

Semantic Web, has never been used in stream data applications.

Its open world assumption and monotonic nature makes SWRL

powerless for doing continuous inference over stream data. For

example, using aggregate functions on a particular window of

streams cannot be expressed in SWRL. C-SPARQL is a

framework which supports continuous querying over data

streams. We introduce here C-SWRL, a unified Semantic Web

stream reasoning system that further supports continuous

reasoning over stream data. C-SWRL utilizes C-SPARQL

filtering and aggregation of RDF streams to enable closed-world

and time-aware reasoning with SWRL rules. Moreover, the non-

monotonic behavior is supported with the use of OWLAPI

constructs. The system is presented by means of examples in

water quality monitoring.

Keywords-stream data; Semantic Web; reasoning; SWRL; rules

I. INTRODUCTION

Sensor measurements, social networks, health monitoring,
smart cities and other massive data sources are continuously
producing massive amount of data called stream data. Stream
data are defined as unbounded sequences of time-varying data
elements [6]. Reasoning with these kinds of data with Semantic
Web techniques has eventually contributed in a new research
area called Stream Reasoning (SR). The aim to derive high
level knowledge from low level data streams is one of the
challenging requirements which cannot be easily satisfied with
the classic solutions for data stream and complex event
processing and with reasoning engines for static data [23]. The
W3C RDF Stream Processing Community Group has set their
mission to define common model for producing, transmitting
and continuously querying Resource Description Framework
(RDF) Streams. RDF streams are a sequence of RDF triples
that are continuously produced and annotated with a timestamp
[11]. However, even though different works exist (e. g.
ETALIS [16], StreamRule [14] etc.), rule-based reasoning over
RDF streams still remains vastly unexplored.

This paper proposes a unified Semantic Web approach for
rule-based reasoning over stream data complementing state of
the art query processing engine C-SPARQL [11] with the W3C
proposed Semantic Web rule language i.e. the Semantic Web
Rule Language (SWRL).

Semantic technologies have proved evidence of efficient
implementations on stream data domains [1]. Firstly, the Web
Ontology Language (OWL) has been widely used for modeling
stream data domains, e.g., the SSN ontology [36]. Secondly,
querying these knowledge bases has been merely done by
SPARQL extensions e.g. C-SPARQL [11], EP-SPARQL [12],
etc. Although layering different rule systems over ontologies
has already been suggested [3], using Semantic Web rule
languages, SWRL [5] and the Rule Interchange Format (RIF)
[25], over stream data has to the best of our knowledge not
been considered to date. Thus, as described in our previous
works [1-4], there is an inherent need for a Semantic Web
unified rule system capable of reasoning with stream data. In
line with this vision, we have previously developed the
INWATERSENSE (hereinafter referred to as INWS) ontology
[2], an expert system [3] demonstrating its usage and
StreamJess [4], a production rules system for stream reasoning.
In this paper, we describe Continuous SWRL (or simply C-
SWRL), a SWRL system for reasoning with stream data. It
utilizes C-SPARQL definition of RDF streams and windows
that further supports non-monotonic and time-aware reasoning
on stream data.

The system was validated with simulated data in the water
quality monitoring (WQM) domain, but it is developed for use
within the InWaterSense project with real data. InWaterSense
is an EU funded research project aimed to apply recent
advanced practices stemming from ICT in WQM for healthy
environment, and strengthen Kosovo's capacity in research in
national priority sectors of environment and ICT. An intelligent
wireless sensor network (WSN) for monitoring surface water
quality has been deployed in a river in Kosova and is further
being enriched with more intelligent behavior like is the
contribution presented in this paper.

The paper is organized as follows. Section 2 describes C-
SWRL prototypical design and implementation. System
validation is presented in Section 3 through examples in the
domain of WQM. Related works take place on Section 4.
Finally, the paper closes with conclusion and future plans.

II. C-SWRL

As depicted in Figure 1, C-SWRL uses C-SPARQL output
data as input for SWRL to infer and assert new knowledge to
ontologies. Firstly, sensor provided RDF streams filtering and
aggregation is done by C-SPARQL. Secondly, based on C-
SPARQL output data, OWLAPI [27] constructs are invoked for

asserting new OWL individuals in a temporary class holding all
observation‟s information. Finally, these individuals are
processed by SWRL rules loaded at application startup. These
rules mainly fall into two broad categories:

 monitoring rules, rules for continuous classification of
water bodies based on in situ observations, and

 investigation rules, which fire after monitoring rules detect
any critical status. The information of sources of pollution
stored into the pollutants ontology is used to prejudge the
causer of the pollution.

In another domain, say medicine, the monitoring rules may
continually classify the human„s health status, while the
investigation ones may try to identify the potential sources of
the disease in cases of critical status detection.

Figure 1. C-SWRL conceptual architecture

A. Input data

Input data feeding the system are two folds: domain-
specific and stream data. Static or “slowly” changing data
include description facts of a specific domain e.g. river names,
measurement sites, sensor devices etc. Stream data in C-SWRL
are sensor provided data formatted as RDF streams. Sensors
continually transmit observational data including: observed
parameter name and value and observation location and time.

B. C-SPARQL

RDF streams feed the C-SPARQL query engine. Based on
the registered queries, the engine will output the results, which
in turn will be published on the knowledge base. In general,
triples of values are produced: the water quality name, the
location of measurements and the calculated average value.
According to these values, new instances will be added in the
INWS ontology, described in the next sub-section.

C. INWS ontology

The INWS ontology [2] consists of three modules: core,

regulations and pollutants ontology. The core module includes

description of observation entities. The regulation ontology

models different regulation authorities‟ standards for

monitoring systems e.g. the Water Framework Directive

(WFD), which represents EU‟s framework for WQM. The

pollutants module models pollutants entities and the sources of

pollution.

D. SWRL engine

After processing each window the knowledge base
becomes modified and thus new inferences should be made. In
order to enable SWRL to reason over stream data three
approaches were considered:

 Extending SWRL with stream data reasoning features,

 Translating SWRL to another rule system which
supports stream data reasoning and

 Layering SWRL on top of another system to fill the
gaps of SWRL in support of stream data reasoning.

Extending SWRL with stream data reasoning features is
very expensive since neither of non-monotonicity, closed-
world or time-aware reasoning are supported. State-of-the-art
SWRL extensions may support one, but fail on another feature.
For example, JNOMO [20] is a SWRL extension for enabling
non-monotonic reasoning, but it does not support time-aware
reasoning. JNOMO [20] is also an example of translating
SWRL into Jena [7]. These kind of approaches do not deal with
the different nature of stream data and they also have the
potential of losing information while translating the constructs.

Given the drawbacks if approaching any of the previous
two options, it was decided to layer SWRL over an existing SR
system such as C-SPARQL. C-SPARQL is specifically
designed for stream data applications. It supports closed-world
and time-aware reasoning on stream data. However, as a query
language, it is not intended to have any effect on the underlying
ontology.

 In C-SWRL, SWRL reasoning is implemented with
SWRLAPI [29] methods. Registered monitoring rules detect
the newly published observation data and classify the
observation into appropriate status based on WFD standards
e.g. good, high or moderate. Whenever a moderate status
becomes detected the investigation rules fire to assert the
polluted site and potential sources of pollution. Since this
process is continuous and iterative, to avoid reasserting of
individuals into appropriate classes, the temporary observation
class needs to be cleared at each window processing. This was

done by using the OWLAPI‟s removeAxiom construct. The
same construct was used to enable system‟s non-monotonic
behavior. Namely, SWRL‟s ability to assert new information in
conjunction with OWLAPI‟s one to remove information
enables the modification of the measurement site‟s pollution
status. At each window processing, which processes an
observation on a particular measurement site, the last known
pollution status gets removed from the knowledge base (by
OWLAPI constructs) and a new status is inferred based on the
SWRL rules. In particular, this was managed through the object
property isPolluted relating measurement sites with one of
the instances true or false. Thus, one can query for
measurement sites‟ state at any time of C-SWRL running
application. Moreover, every time a measurement site gets
polluted a new instance of the class PollutedSite is
asserted related with time and pollutants information.

C-SWRL is implemented in Java following the availability
of Java codes of C-SPARQL, OWLAPI and SWRLAPI. The
system is open for loading different SSN-based domain
ontologies, write appropriate C-SPARQL queries and SWRL
rules. Moreover, instead of C-SPARQL and SWRL, with less
effort different SPARQL-like query processing engines
coupled with different rule languages can be integrated,
respectively. The system is publicly available on
http://streamreasoning.uni-pr.edu/. The link contains the source
code, installation instructions and getting started tutorial.

III. VALIDATION

C-SWRL is validated in a typical water quality monitoring
scenario based on WSN. We assume that sensors are deployed
in different measurement sites at different times. They
continually emit water quality measured values. C-SWRL will
(1) classify the water body into the appropriate status according
to WFD regulations [39, 15] and (2) identify the potential
sources of pollution if the values are out of the allowed
standard. The system was validated against a number of water
quality parameters, but for brevity, we will demonstrate the
cases of Biochemical Oxygen Demand (BOD5) observations.
Like most of water quality parameter observations, BOD5
observations are classified based on the average value of
measurements within a time interval, except pH ones which are
considered one by one [15]. The validation examples run at the
same time over the same RDF streams which are filtered out by
different C-SPARQL queries. RDF streams generator runs in
background simulating sensor measurements on, arbitrarily set,
three measurement sites: ms10, ms11 and ms12. BOD5
measurements appear on ms10 and ms11. The streaming rate is
arbitrarily set to one stream per second. A single RDF stream
holds information of the measured value, water quality name,
observation time and location and the device providing the
observation. Figure 2 illustrates a screenshot of the C-SWRL
console output of the running example.

A WFD rule for classifying BOD5 observations looks as
follows: If BOD5 measurements in mg O2/l is less than 1.3
(mean), then river belongs to “high” status of oxygen
condition; if it is less than 1.5 then river belongs to “good”
status of oxygen condition; otherwise the river belongs to
“moderate” status of oxygen condition [15]. Potential sources
of pollution from which BOD5 discharges could arise include:

contaminated land, farm wastes and silage, fish farming,
effluent discharges from sewage treatment works, landfill sites
and urban storm water discharges [10].

After processing the first window of RDF streams a new
BOD5 average value is calculated by the following C-SPARQL
query:

REGISTER STREAM AvgObservations AS
PREFIX inwsc: <http://inwatersense.uni-
pr.edu/ontologies/inws-core.owl#>
PREFIX ssn:
<http://purl.oclc.org/NET/ssnx/ssn#>
PREFIX dul: <http://www.loa-
cnr.it/ontologies/DUL.owl#>
SELECT ?qo ?loc (AVG(?dv) AS ?avg)
FROM STREAM <http://inwatersense.uni-
pr.edu/stream> [RANGE 20s STEP 20s]
FROM <http://inwatersense.uni-
pr.edu/ontologies/inws-core.owl>
WHERE {
?o ssn:qualityOfObservation ?qo .
?o ssn:observationResult ?r .
?r ssn:hasValue ?v .
?v dul:hasDataValue ?dv .
 ?o inwsc:observationResultLocation ?loc .
 FILTER (?qo != inwsc:pH)
}
GROUP BY ?qo ?loc

Figure 2. An output excerpt of BOD5 monitoring on C-SWRL

The query runs against the input RDF streams in the time
frame of 20 seconds, sliding the window by 20 seconds. The
chosen time frame is arbitrary and the user can change its
values as desired. It produces triples of values: the water
quality name (?qo), the location of measurements (?loc) and
the calculated average value (?avg). The triples are filtered out
to exclude pH ones and are firstly grouped by the water quality
name and then by the measurement site. At every 20 seconds
new RDF streams enter into the window and old ones exit. An
output of a window processing of this query is depicted in the
lower part of Figure 2, namely on the lines marked with „#‟
symbol followed by an order number and (C-SPARQL) label.
Namely, C-SPARQL has outputted two results.

At every query execution, for each new triple (?qo, ?loc,
?avg), a new individual of a temporary INWS class
tmpObservation is asserted into the ontology using
OWLAPI constructs. This individual indicates a new input
observation has arrived. Following the INWS ontology design
this individual is associated through:

 ssn:qualityOfObservation with the water quality
parameter name i.e. ?qo,

 observationResultLocation property with
?loc,

 ssn:observationResult with new
ssn:SensorOutput instance, which in turn is related
with a new ssn:ObservationValue instance through
ssn:hasValue property, which finally is associated
with the observation‟s average value ?avg through
dul:hasDataValue.

 ssn:observationResultTime with the system‟s
timestamp

Next, the SWRL rule engine is executed firing the
registered SWRL monitoring rules. These rules include the
following ones for BOD5 WFD classification (user-defined
prefixes are omitted for brevity):

1. tmpObservation (?x) ^
qualityOfObservation(?x,BiochemicalOxygenDemand
) ^ observationResult(?x, ?y) ^ hasValue(?y,
?e) ^ hasDataValue(?e,?z) ^
swrlb:greaterThan(?z, 1.3) ^ swrlb:lessThan(?z,
1.5) -> GoodBODMeasurement(?x) ^
tmpGoodBODMeasurement(?x) ^ isPolluted(?ms,
false) ^ Observation(?x)

2. tmpObservation (?x) ^
qualityOfObservation(?x,BiochemicalOxygenDemand
) ^ observationResult(?x, ?y) ^ hasValue(?y,
?e) ^ hasDataValue(?e,?z) ^ swrlb:lessThan(?z,
1.3) -> HighBODMeasurement(?x) ^
tmpHighBODMeasurement(?x) ^ isPolluted(?ms,
false) ^ Observation(?x)

3. tmpObservation (?x) ^
qualityOfObservation(?x,
BiochemicalOxygenDemand) ^
observationResult(?x, ?y) ^ hasValue(?y, ?e) ^
hasDataValue(?e,?z) ^ swrlb:greaterThan(?z,
1.5) -> ModerateBODMeasurement(?x) ^
tmpModerateBODMeasurement(?x) ^ isPolluted(?ms,
true) ^ Observation(?x)

Figure 3. An output excerpt of the BOD5 monitoring on C-SWRL

The first rule matches the individuals (?x) of the temporary
class related to BOD5 measurements and checks its average
value. If it is between 1.3 and 1.5 then the status is “good” i.e.
the individual is asserted as of type GoodBODMeasurement.
The same matching is done with the second and third rule
respectively. For the second one the average value is checked
to be lower than 1.3 for its classification. If so, the status is
“high” i.e. the individual is asserted as of type
HighBODMeasurement. In the third rule the average value
is checked to be greater than 1.5 for classifying in “moderate”
status i.e. class ModerateBODMeasurement. A temporary
class tmpModerateBODMeasurement is used for
investigation of sources of pollution. In the first and second
rule the respective temporary classes are used for displaying
the calculated status to the user interface. In each RHS of the
rules the temporary observation individual gets stored in the
class Observation as per historical data records. Moreover, the
isPolluted object property is used to maintain the current
state of the measurement site. It is set to „false‟ in the cases of
“good” and “high” statuses while it is set to „true‟ when

detecting “moderate” status. In the running example the firing
of rules has produced one “moderate” and one “good” status, as
illustrated in the lower part of Figure 2 i.e. the lines starting
with (C-SWRL) label followed by the detected status
information. Since, the first C-SPARQL calculated average
value is 1.503 which is greater than 1.5 the third rule has fired
asserting new individuals in ModerateBODMeasurement
and tmpModerateBODMeasurement.

New individual in the class
tmpModerateBODMeasurement will cause to fire the
following investigation rule, which is also registered at
application startup:

4. tmpModerateBODMeasurement(?x) ^
observationResultTime(?x, ?t) ^
observationResultLocation(?x, ?ms) ^ has-
SourcesOfPollution(?ms, ?pollsrc) ^
potentialPollutant(?pollsrc,
BiochemicalOxygenDemand) ->
foundPollutionSources(?x, ?pollsrc)

This rule binds the “moderate” status observations (?x)
with measurement site‟s (?ms) nearby BOD5 sources of
pollution (?pollsrc) extracted from the knowledge base.
The observations (?x) satisfying the LHS clauses will become
related with the matching pollution sources. These results will
be displayed to the user interface right after the “moderate”
status detection like is shown on the first C-SPARQL result in
Figure 2. From the Figure we can observe that the potential
sources of pollution caused on ms11 are “urban storm water
discharges” and “landfill sites”.

At the end of each window processing and reasoning, the
current status of the sites are queried and printed out. On Figure
2, we can observe that the last statuses for measurement sites
ms10 and ms11 are “clean” and “polluted”, respectively.

The monitoring and investigation rules for all the water
quality parameters are the same as the ones for BOD5,
described previously. Of course, the threshold values are
different according to WFD regulations. The query
AvgObservations will match all the water quality
observations, except pH ones. For pH observations new query
similar to AvgObservations was written. Namely, no
aggregation function is used in the SELECT statement and thus
no grouping is needed. The FILTER clause uses the equal
symbol rather than the unequal one.

IV. RELATED WORKS

State-of-the-art rule-based systems for reasoning over
stream data mainly fall into two broad categories: hybrid and
homogeneous approaches [1]. In the former one the reasoning
is done by interfacing existing rule reasoner with existing
ontology reasoner, while in the latter one both ontologies and
rules are embedded into the same logical language without
making a priori distinction between the rule predicates and the
ontology predicates [13].

A. Hybrid approaches

Hybrid approaches layer different non-DL rule systems on
top of ontologies like: production rules, CEP, LP, answer set
programming (ASP), etc. In our previous work [1], we

described in more detail about each one of these approaches
and their pros and cons. In general, hybrid solutions have
achieved the desired system behavior. However, these
approaches mainly suffer from translation and reasoner issues
and potential side-effects occurrence. In these approaches, the
ontology is translated into the corresponding formalisms of the
underlying rule system. A drawback of this translation is that a
possible loss of information may occur. Since the ontology and
the rules are treated separately then a rule engine and a DL
reasoner will run concurrently [9]. As argued in [9], some
inferences would no longer be derived after separating OWL
and rules. Furthermore, when adding a new rule a possible
side-effect may occur.

A similar approach to C-SWRL is followed by StreamRule
[14], the pioneer of coupling stream processing with ASP non-
monotonic reasoning. Even though the approach is still much
more prototypical it demonstrates how non-monotonic and
time-aware reasoning can be integrated into a unique platform
for stream data reasoning. The continuous rule feature is
implemented through separate steps. Namely, stream filtering
and aggregation is done through a stream query processor such
as CQELS [31], while OClingo [32] is used to enable non-
monotonic reasoning. In C-SWRL we use C-SPARQL for
filtering and aggregation purposes, and OWLAPI for non-
monotonic reasoning. Even though that CQELS outperforms
C-SPARQL [38], we preferred C-SPARQL following its
advantage to use nested aggregations and negation [37, 38].
Moreover, we plan to support temporal operators, which lack
any support in CQELS [37]. Another feature difference
between StreamRule and C-SWRL is the historical data
management, which is one of the key requirements of SR tools
[8]. C-SWRL keeps evidence of every previous environment
state. For example, one can query the ontology for a particular
measurement site‟s pollution status of the past. OClingo feeds
back the reasoning results into Java runtime for further
processing or display, while in C-SWRL, the results are
deployed back into the knowledge base through the OWLAPI‟s
saveOntology function and thus the memory gets released
and the data are available for query and retrieval.

Recently, [21] proposed another non-monotonic ASP-based
SR system, which provides support for C-SPARQL query
engine. The system supports reasoning even in incomplete
information cases through negation as failure feature, but like
StreamRule it does not support historical data management.
Moreover, the reasoning results are returned as JSON objects to
the corresponding web socket clients, while in C-SWRL the
reasoning results are returned as standard RDF data populating
corresponding ontology classes.

ETALIS [16] together with EP-SPARQL [12] enables CEP
with stream reasoning. Even though ETALIS offers reasoning
on time and location spaces it does not implement the windows
feature. Time-based windows are supported through its
wrapper EP-SPARQL, but complicated aggregations within
windows are not supported [38]. Moreover, there is no support
for triple-based windows too.

B. Semantic Web approaches

In the literature this approach is also referred to as
interaction of ontologies and rules with tight semantic
integration [13]. Even though using SWRL with OWL has
distinct advantages, these approaches mainly suffer from
limited expressiveness or undecidability [13]. In C-SWRL, the
required expressivity is extended by C-SPARQL and OWLAPI
functions. Additionally, works described in [17], [18] and [19]
prove that decidability can be retained by the so-called DL-safe
rules. For example, retaining decidability in [17] is done
through restricting the interface between OWL and rules.

State of the art homogeny approaches, like the ones
described in [33, 34], do not make any distinction between
stream and static data, while also lack implementation. They
prove that SWRL can be used to infer new and approximate
knowledge in stream data domains. However, their approach
does not consider time-aware and non-monotonic reasoning.
Recently, a SPARQL extension [24] that uses CON-
STRUCT/WHERE clauses to express rules has been proposed.
Yet again this approach does not consider non-monotonic
reasoning. The works presented in [30, 35] describe a Rete-
based [28] approach of RDFS entailment rules for producing
data in a continuous manner. Although supporting time-aware
and incremental reasoning, the approach does not deal with
non-monotonic and closed-world reasoning. JNOMO [20]
shows how SWRL can be extended to embrace non-
monotonicity, CWA and NAF. However, it does not deal with
stream data, while inclusion of temporal reasoning is
envisioned as per future works.

V. CONCLUSION AND FUTURE WORKS

Until recently most of the SR research has been dedicated
on ontology and query processing developments. Dealing with
stream reasoning issues through query processing is not
enough. Our work goes beyond the query processing
achievements and thus focusing on rule level implications of
stream data. SWRL, on its own, lacks the required expressivity
level to reason over stream data. The main contribution of this
paper is in establishing a unique Semantic Web rule system
capable for expressive reasoning over stream data. In this
vision, we developed C-SWRL which layers SWRL on top of
C-SPARQL to enable time-aware, closed-world and non-
monotonic reasoning on stream data domains. For non-
monotonic reasoning purposes, C-SWRL uses SWRL together
with OWLAPI constructs to modify the knowledge base.

We are currently evaluating the examples presented here in
Drools, for which we shall conduct a thorough performance
evaluation and thus analyze the scalability issues. Our initial
findings show that evaluating C-SWRL proves difficult due to
the nature of our system, code availability of related systems
and published evaluation results. Regarding the stream
processing level it has been discovered that C-SPARQL yields
considerably lower through-put compared to JTALIS and
CQELS [22]. Thus, our main evaluation concern remains the
stream reasoning component. We agree with Barbieri et al. [26]
urgency for development of specialized reasoners for stream
data applications. We also plan to evaluate C-SWRL against
our previously developed Jess system, StreamJess [4].

REFERENCES

[1] E. Jajaga, L. Ahmedi and L. Abazi-Bexheti, Semantic Web trends on
reasoning over sensor data, in: 8th South East European Doctoral
Student Conference, Greece, 2013.

[2] L. Ahmedi, E.Jajaga and F. Ahmedi, An ontology framework for water
quality management, in: Ó. Corcho, C. A. Henson, and P. M. Barnaghi,
ed., SSN@ISWC, Sydney, 2013, pp. 35-50.

[3] E. Jajaga and L. Ahmedi, An expert system for water quality monitoring
based on ontology, in: 9th Metadata and Semantics Research
Conference, Manchester, UK, September 9-11, 2015, pp. 89-100.

[4] E. Jajaga, L. Ahmedi and F. Ahmedi: StreamJess: a stream reasoning
framework for water quality monitoring. J. of Metadata, Semantics and
Ontologies, in press.

[5] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M.
Dean, SWRL: A Semantic Web rule language combining OWL and
RuleML, 2004.

[6] E. Della Valle, S. Ceri, D. F. Barbieri, Daniel Braga, and A. Campi, A
first step towards stream reasoning, in: Proc. Future Internet Symposium
(FIS 08), Springer, 2008, pp. 72–81.

[7] B. McBride, Jena: implementing the RDF model and syntax
specification, in: Proc. at Semantic Web Workshop (WWW), 2004.

[8] A. Margara, J. Urbani, F. van Harmelen and H. Bal, Streaming the web:
reasoning over dynamic data, Web Semantics: Science, Services and
Agents on the World Wide Web, 25(0), (2014), 24 – 44.

[9] J. Mei, E. P. Bontas: Reasoning Paradigms for SWRL-Enabled
Ontologies Protégé With Rules, in: Workshop held at the 8th
International Protégé Conference, Madrid, Spain, 2005.

[10] Sources of Pollution, Foundation for Water Research, Information Note
FWR-WFD16, 2005.

[11] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle and M. Grossniklaus, C-
SPARQL: a continuous query language for RDF data streams,
International Journal of Semantic Computing 04-01 (2010), 3–25.

[12] D. Anicic, P. Fodor, S. Rudolph and N. Stojanovic, EP-SPARQL: a
unified language for event processing and stream reasoning, in: WWW
2011, 2011, pp. 635–644.

[13] T. Eiter, G. Ianni, A. Polleres, R. Schindlauer and H. Tompits:
Reasoning with rules and ontologies, in: P. Barahona, F. Bry, E.
Franconi, N. Henze, U. Sattler (Eds.), Reasoning Web, Second
International Summer School 2006, Tutorial Lectures, LNCS, vol. 4126,
Springer, pp. 93–127, 2006.

[14] A. Mileo, A. Abdelrahman, S. Policarpio and M. Hauswirth,
StreamRule: a nonmonotonic stream reasoning system for the semantic
web, in: W. Faber, D. Lembo, ed., RR 2013, LNCS, Springer,
Heidelberg, 2013, vol. 7994, pp. 247–252.

[15] European Communities Environmental Objectives (Surface Waters)
Regulations, 2009.

[16] D. Anicic, P. Fodor, S. Rudolph, R. Stuhmer, N. Stojanovic, R. Studer:
A Rule-Based Language for Complex Event Processing Reasoning, in:
Proceedings of the Fourth International Conference on Web reasoning
and rule systems, pp. 42-57, Springer-Verlag Berlin, Heidelberg, 2010.

[17] B. Motik, U. Sattler and R. Studer: Query Answering for OWL-DL with
rules, Journal of Web Semantics, 3(1), pp. 41–60, 2005.

[18] F. M. Donini, M. Lenzerini, D. Nardi and A. Schaerf: AL-log:
Integrating Datalog and Description Logics, J. of Intelligent Information
Systems, 10(3), pp. 227–252, 1998.

[19] S. Heymans, D. V. Nieuwenborgh and D. Vermeir: Nonmonotonic
Ontological and Rule-Based Reasoning with Extended Conceptual Logic
Programs, in: Proc. Second European Semantic Web Conference
(ESWC 2005), vol. 3532, pp. 392–407, Springer Verlag, 2005.

[20] J. M. A. Calero, A. M. Ortega, G. M. Perez, J. A. B. Blaya and A. F. G.
Skarmeta, A non-monotonic expressiveness extension on the semantic
web rule language, J. Web Eng., 11(2), pp. 93–118, 2012.

[21] M. I. Ali, N. Ono, M. Kaysar, Z. U. Shamszaman, T.-L. Pham, F. Gao,
K. Griffin and A. Mileo: Real-time Data Analytics and Event Detection

for IoT-enabled Communication Systems, J. of Web Semantics: Science,
Services and Agents on the World Wide Web, July, 2016.

[22] D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter and M.
Fink: Linked stream data processing engines: facts and figures, in: The
Semantic Web – ISWC 2012. Springer, pp. 300–312, 2012.

[23] E. Della Valle, D. Dell‟Aglio, A. Margara: Tutorial: Taming Velocity
and Variety Simultaneously in Big Data with Stream Reasoning, in: The
10th ACM International Conference on Distributed and Event-Based
Systems, Irvine, USA, June 20-24, 2016.

[24] J. Anderson, T. Athan and A. Paschke: Rules and RDF Streams - A
Position Paper, in: Proceedings of the RuleML 2016 Challenge, Doctoral
Consortium and Industry Track hosted by the 10th International Web
Rule Symposium (RuleML 2016), New York, USA, July 6-9, 2016.

[25] H. Boley, M.Kifer, P.-L. Patranjan, and A. Polleres, Rule interchange on
the web, in: G. Antoniou, U. Aßmann, C. Baroglio, S. Decker, N. Henze,
P.-L. Patranjan, R. Tolksdorf, ed., Reasoning Web, LNCS, Springer,
Heidelberg, 2007, vol. 4636, pp. 269–309.

[26] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Grossniklaus: Stream
Reasoning: Where We Got So Far, in: Proceedings of the 4th
International Workshop on New Forms of Reasoning for the Semantic
Web: Scalable and Dynamic (NeFoRS), 2010.

[27] M. Horridge and S. Bechhofer, The OWL API: A Java API for working
with OWL 2 ontologies, in: OWLED 2009, 6th OWL Experienced and
Directions Workshop, Chantilly, Virginia, 2009.

[28] C. L. Forgy, Rete: A fast algorithm for the many pattern/many object
pattern match problem, Artificial Intelligence 19 (1) (1982), 17 – 37.

[29] M. J. O'Connor, H. Knublauch, S. W. Tu, B. Grossof, M. Dean, W. E.
Grosso, and M. A. Musen, Supporting rule system interoperability on the
Semantic Web with SWRL, in: 4th International Semantic Web
Conference (ISWC), Galway, Ireland, Springer Verlag, LNCS 3729,
2005, pp. 974-986.

[30] S. Tallevi-Diotallevi, S. Kotoulas, L. Foschini, F. Lecue and A. Corradi,
Real-time urban monitoring in Dublin using semantic and stream
technologies, in: The Semantic Web ISWC 2013, H. Alani, L. Kagal, A.
Fokoue, P. Groth, C. Biemann, J. Parreira, L. Aroyo, N. Noy, C. Welty
and K. Janowicz, ed., vol. 8219 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2013, pp. 178–194.

[31] D. Le-Phuoc, M. Dao-Tran, J. Xavier Parreira and M. Hauswirth, A
native and adaptive approach for unified processing of linked streams
and linked data, in: The Semantic Web–ISWC 2011, 2011, pp. 370–388.

[32] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and T.
Schaub, Answer set programming for stream reasoning, in: CoRR, 2013.

[33] W. Wei and P. Barnaghi, Semantic annotation and reasoning for sensor
data, in: Smart Sensing and Context, 2009, pp.66-76.

[34] C. Keßler, M. Raubal and C, Wosniok, Semantic rules for context-aware
geographical information retrieval, in: P. Barnaghi, ed., European
Conference on Smart Sensing and Context, EuroSSC 2009, LNCS,
Springer, 2009, vol. 5741, pp. 77–92.

[35] R. Albeladi, K. Martinez and N. Gibbins, Incremental rule-based
reasoning over RDF streams: An expression of interest, in: RDF Stream
Processing Workshop at the 12th Extended Semantic Web Conference,
Portoroz, Slovenia, 2015.

[36] M. Compton, P. Barnaghi, L Bermudez, R. GarcíaCastro, O. Corcho, S.
Cox, J. Graybeal, M. Hauswirth, C. A. Henson, A. Herzog, V. A. Huang,
K. Janowicz, W. D. Kelsey, D. L. Phuoc, L. Lefort, M. Leggieri, H.
Neuhaus, A. Nikolov, K. R. Page, A. Passant, A. P. Sheth and K. Taylor,
The SSN ontology of the W3C semantic sensor network incubator
group, Journal of Web Semantics 17 (2012), 25–32.

[37] N. Lanzanasto, S. Komazec and I. Toma, Deliverable D4.8: Reasoning
over real time data streams, ENVISION Consortium 2009-2012.

[38] D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, and M.
Fink, Linked stream data processing engines: facts and figures, in: The
Semantic Web–ISWC 2012, Springer, 2012, pp. 300–312.

[39] Method statement for the classification of surface water bodies, v2.0
(external release), Monitoring Strategy v2.0, July 2011.

