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Abstract—Semantic technologies have been extensively used for 

integrating stream data applications. However, using SWRL, 

which has become the de facto standard rule language in 

Semantic Web, has never been used in stream data applications. 

Its open world assumption and monotonic nature makes SWRL 

powerless for doing continuous inference over stream data. For 

example, using aggregate functions on a particular window of 

streams cannot be expressed in SWRL. C-SPARQL is a 

framework which supports continuous querying over data 

streams. We introduce here C-SWRL, a unified Semantic Web 

stream reasoning system that further supports continuous 

reasoning over stream data. C-SWRL utilizes C-SPARQL 

filtering and aggregation of RDF streams to enable closed-world 

and time-aware reasoning with SWRL rules. Moreover, the non-

monotonic behavior is supported with the use of OWLAPI 

constructs. The system is presented by means of examples in 

water quality monitoring.  
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I.  INTRODUCTION 

Sensor measurements, social networks, health monitoring, 
smart cities and other massive data sources are continuously 
producing massive amount of data called stream data. Stream 
data are defined as unbounded sequences of time-varying data 
elements [6]. Reasoning with these kinds of data with Semantic 
Web techniques has eventually contributed in a new research 
area called Stream Reasoning (SR). The aim to derive high 
level knowledge from low level data streams is one of the 
challenging requirements which cannot be easily satisfied with 
the classic solutions for data stream and complex event 
processing and with reasoning engines for static data [23]. The 
W3C RDF Stream Processing Community Group has set their 
mission to define common model for producing, transmitting 
and continuously querying Resource Description Framework 
(RDF) Streams. RDF streams are a sequence of RDF triples 
that are continuously produced and annotated with a timestamp 
[11]. However, even though different works exist (e. g. 
ETALIS [16], StreamRule [14] etc.), rule-based reasoning over 
RDF streams still remains vastly unexplored. 

This paper proposes a unified Semantic Web approach for 
rule-based reasoning over stream data complementing state of 
the art query processing engine C-SPARQL [11] with the W3C 
proposed Semantic Web rule language i.e. the Semantic Web 
Rule Language (SWRL).   

Semantic technologies have proved evidence of efficient 
implementations on stream data domains [1]. Firstly, the Web 
Ontology Language (OWL) has been widely used for modeling 
stream data domains, e.g., the SSN ontology [36]. Secondly, 
querying these knowledge bases has been merely done by 
SPARQL extensions e.g. C-SPARQL [11], EP-SPARQL [12], 
etc. Although layering different rule systems over ontologies 
has already been suggested [3], using Semantic Web rule 
languages, SWRL [5] and the Rule Interchange Format (RIF) 
[25], over stream data has to the best of our knowledge not 
been considered to date. Thus, as described in our previous 
works [1-4], there is an inherent need for a Semantic Web 
unified rule system capable of reasoning with stream data. In 
line with this vision, we have previously developed the 
INWATERSENSE (hereinafter referred to as INWS) ontology 
[2], an expert system [3] demonstrating its usage and 
StreamJess [4], a production rules system for stream reasoning. 
In this paper, we describe Continuous SWRL (or simply C-
SWRL), a SWRL system for reasoning with stream data. It 
utilizes C-SPARQL definition of RDF streams and windows 
that further supports non-monotonic and time-aware reasoning 
on stream data.  

The system was validated with simulated data in the water 
quality monitoring (WQM) domain, but it is developed for use 
within the InWaterSense project with real data. InWaterSense 
is an EU funded research project aimed to apply recent 
advanced practices stemming from ICT in WQM for healthy 
environment, and strengthen Kosovo's capacity in research in 
national priority sectors of environment and ICT. An intelligent 
wireless sensor network (WSN) for monitoring surface water 
quality has been deployed in a river in Kosova and is further 
being enriched with more intelligent behavior like is the 
contribution presented in this paper. 

The paper is organized as follows. Section 2 describes C-
SWRL prototypical design and implementation. System 
validation is presented in Section 3 through examples in the 
domain of WQM. Related works take place on Section 4. 
Finally, the paper closes with conclusion and future plans. 

II. C-SWRL 

As depicted in Figure 1, C-SWRL uses C-SPARQL output 
data as input for SWRL to infer and assert new knowledge to 
ontologies. Firstly, sensor provided RDF streams filtering and 
aggregation is done by C-SPARQL. Secondly, based on C-
SPARQL output data, OWLAPI [27] constructs are invoked for 



asserting new OWL individuals in a temporary class holding all 
observation‟s information. Finally, these individuals are 
processed by SWRL rules loaded at application startup. These 
rules mainly fall into two broad categories: 

 monitoring rules, rules for continuous classification of 
water bodies based on in situ observations, and 

 investigation rules, which fire after monitoring rules detect 
any critical status. The information of sources of pollution 
stored into the pollutants ontology is used to prejudge the 
causer of the pollution. 

In another domain, say medicine, the monitoring rules may 
continually classify the human„s health status, while the 
investigation ones may try to identify the potential sources of 
the disease in cases of critical status detection. 

 

Figure 1.  C-SWRL conceptual architecture 

A. Input data 

Input data feeding the system are two folds: domain-
specific and stream data. Static or “slowly” changing data 
include description facts of a specific domain e.g. river names, 
measurement sites, sensor devices etc. Stream data in C-SWRL 
are sensor provided data formatted as RDF streams. Sensors 
continually transmit observational data including: observed 
parameter name and value and observation location and time. 

B. C-SPARQL 

RDF streams feed the C-SPARQL query engine. Based on 
the registered queries, the engine will output the results, which 
in turn will be published on the knowledge base. In general, 
triples of values are produced: the water quality name, the 
location of measurements and the calculated average value. 
According to these values, new instances will be added in the 
INWS ontology, described in the next sub-section. 

C. INWS ontology 

The INWS ontology [2] consists of three modules: core, 

regulations and pollutants ontology. The core module includes 

description of observation entities. The regulation ontology 

models different regulation authorities‟ standards for 

monitoring systems e.g. the Water Framework Directive 

(WFD), which represents EU‟s framework for WQM. The 

pollutants module models pollutants entities and the sources of 

pollution. 

D. SWRL engine 

After processing each window the knowledge base 
becomes modified and thus new inferences should be made. In 
order to enable SWRL to reason over stream data three 
approaches were considered: 

 Extending SWRL with stream data reasoning features,  

 Translating SWRL to another rule system which 
supports stream data reasoning and 

 Layering SWRL on top of another system to fill the 
gaps of SWRL in support of stream data reasoning. 

Extending SWRL with stream data reasoning features is 
very expensive since neither of non-monotonicity, closed-
world or time-aware reasoning are supported. State-of-the-art 
SWRL extensions may support one, but fail on another feature. 
For example, JNOMO [20] is a SWRL extension for enabling 
non-monotonic reasoning, but it does not support time-aware 
reasoning. JNOMO [20] is also an example of translating 
SWRL into Jena [7]. These kind of approaches do not deal with 
the different nature of stream data and they also have the 
potential of losing information while translating the constructs. 

Given the drawbacks if approaching any of the previous 
two options, it was decided to layer SWRL over an existing SR 
system such as C-SPARQL. C-SPARQL is specifically 
designed for stream data applications. It supports closed-world 
and time-aware reasoning on stream data. However, as a query 
language, it is not intended to have any effect on the underlying 
ontology. 

 In C-SWRL, SWRL reasoning is implemented with 
SWRLAPI [29] methods. Registered monitoring rules detect 
the newly published observation data and classify the 
observation into appropriate status based on WFD standards 
e.g. good, high or moderate. Whenever a moderate status 
becomes detected the investigation rules fire to assert the 
polluted site and potential sources of pollution. Since this 
process is continuous and iterative, to avoid reasserting of 
individuals into appropriate classes, the temporary observation 
class needs to be cleared at each window processing. This was 



 

done by using the OWLAPI‟s removeAxiom construct. The 
same construct was used to enable system‟s non-monotonic 
behavior. Namely, SWRL‟s ability to assert new information in 
conjunction with OWLAPI‟s one to remove information 
enables the modification of the measurement site‟s pollution 
status. At each window processing, which processes an 
observation on a particular measurement site, the last known 
pollution status gets removed from the knowledge base (by 
OWLAPI constructs) and a new status is inferred based on the 
SWRL rules. In particular, this was managed through the object 
property isPolluted relating measurement sites with one of 
the instances true or false.  Thus, one can query for 
measurement sites‟ state at any time of C-SWRL running 
application. Moreover, every time a measurement site gets 
polluted a new instance of the class PollutedSite is 
asserted related with time and pollutants information.  

C-SWRL is implemented in Java following the availability 
of Java codes of C-SPARQL, OWLAPI and SWRLAPI. The 
system is open for loading different SSN-based domain 
ontologies, write appropriate C-SPARQL queries and SWRL 
rules. Moreover, instead of C-SPARQL and SWRL, with less 
effort different SPARQL-like query processing engines 
coupled with different rule languages can be integrated, 
respectively. The system is publicly available on 
http://streamreasoning.uni-pr.edu/. The link contains the source 
code, installation instructions and getting started tutorial.  

III. VALIDATION 

C-SWRL is validated in a typical water quality monitoring 
scenario based on WSN. We assume that sensors are deployed 
in different measurement sites at different times. They 
continually emit water quality measured values. C-SWRL will 
(1) classify the water body into the appropriate status according 
to WFD regulations [39, 15] and (2) identify the potential 
sources of pollution if the values are out of the allowed 
standard. The system was validated against a number of water 
quality parameters, but for brevity, we will demonstrate the 
cases of Biochemical Oxygen Demand (BOD5) observations. 
Like most of water quality parameter observations, BOD5 
observations are classified based on the average value of 
measurements within a time interval, except pH ones which are 
considered one by one [15]. The validation examples run at the 
same time over the same RDF streams which are filtered out by 
different C-SPARQL queries. RDF streams generator runs in 
background simulating sensor measurements on, arbitrarily set, 
three measurement sites: ms10, ms11 and ms12. BOD5 
measurements appear on ms10 and ms11. The streaming rate is 
arbitrarily set to one stream per second. A single RDF stream 
holds information of the measured value, water quality name, 
observation time and location and the device providing the 
observation. Figure 2 illustrates a screenshot of the C-SWRL 
console output of the running example. 

A WFD rule for classifying BOD5 observations looks as 
follows: If BOD5 measurements in mg O2/l is less than 1.3 
(mean), then river belongs to “high” status of oxygen 
condition; if it is less than 1.5 then river belongs to “good” 
status of oxygen condition; otherwise the river belongs to 
“moderate” status of oxygen condition  [15]. Potential sources 
of pollution from which BOD5 discharges could arise include: 

contaminated land, farm wastes and silage, fish farming, 
effluent discharges from sewage treatment works, landfill sites 
and urban storm water discharges [10]. 

After processing the first window of RDF streams a new 
BOD5 average value is calculated by the following C-SPARQL 
query: 

REGISTER STREAM AvgObservations AS  
PREFIX inwsc: <http://inwatersense.uni-
pr.edu/ontologies/inws-core.owl#>  
PREFIX ssn: 
<http://purl.oclc.org/NET/ssnx/ssn#>  
PREFIX dul: <http://www.loa-
cnr.it/ontologies/DUL.owl#>  
SELECT ?qo ?loc (AVG(?dv) AS ?avg)  
FROM STREAM <http://inwatersense.uni-
pr.edu/stream> [RANGE 20s STEP 20s]  
FROM <http://inwatersense.uni-
pr.edu/ontologies/inws-core.owl>  
WHERE {  
?o ssn:qualityOfObservation ?qo .  
?o ssn:observationResult ?r .  
?r ssn:hasValue ?v .  
?v dul:hasDataValue ?dv . 
  ?o inwsc:observationResultLocation ?loc . 
  FILTER (?qo != inwsc:pH) 
}  
GROUP BY ?qo ?loc 

Figure 2.  An output excerpt of BOD5 monitoring on C-SWRL 

The query runs against the input RDF streams in the time 
frame of 20 seconds, sliding the window by 20 seconds. The 
chosen time frame is arbitrary and the user can change its 
values as desired. It produces triples of values: the water 
quality name (?qo), the location of measurements (?loc) and 
the calculated average value (?avg). The triples are filtered out 
to exclude pH ones and are firstly grouped by the water quality 
name and then by the measurement site. At every 20 seconds 
new RDF streams enter into the window and old ones exit. An 
output of a window processing of this query is depicted in the 
lower part of Figure 2, namely on the lines marked with „#‟ 
symbol followed by an order number and (C-SPARQL) label. 
Namely, C-SPARQL has outputted two results. 

At every query execution, for each new triple (?qo, ?loc, 
?avg), a new individual of a temporary INWS class 
tmpObservation is asserted into the ontology using 
OWLAPI constructs. This individual indicates a new input 
observation has arrived. Following the INWS ontology design 
this individual is associated through:  



 ssn:qualityOfObservation with the water quality 
parameter name i.e. ?qo,  

 observationResultLocation property with 
?loc, 

 ssn:observationResult with new 
ssn:SensorOutput instance, which in turn  is related 
with a new ssn:ObservationValue instance through 
ssn:hasValue property, which finally is associated 
with the observation‟s average value ?avg through 
dul:hasDataValue.  

 ssn:observationResultTime with the system‟s 
timestamp 

Next, the SWRL rule engine is executed firing the 
registered SWRL monitoring rules. These rules include the 
following ones for BOD5 WFD classification (user-defined 
prefixes are omitted for brevity): 

1. tmpObservation (?x) ^ 
qualityOfObservation(?x,BiochemicalOxygenDemand
)  ^ observationResult(?x, ?y) ^ hasValue(?y, 
?e) ^ hasDataValue(?e,?z) ^ 
swrlb:greaterThan(?z, 1.3) ^ swrlb:lessThan(?z, 
1.5) -> GoodBODMeasurement(?x) ^ 
tmpGoodBODMeasurement(?x) ^ isPolluted(?ms, 
false) ^ Observation(?x) 

2. tmpObservation (?x) ^ 
qualityOfObservation(?x,BiochemicalOxygenDemand
)  ^ observationResult(?x, ?y) ^ hasValue(?y, 
?e) ^ hasDataValue(?e,?z) ^ swrlb:lessThan(?z, 
1.3) ->  HighBODMeasurement(?x) ^ 
tmpHighBODMeasurement(?x) ^ isPolluted(?ms, 
false) ^ Observation(?x) 

3. tmpObservation (?x) ^ 
qualityOfObservation(?x, 
BiochemicalOxygenDemand)  ^ 
observationResult(?x, ?y) ^ hasValue(?y, ?e) ^ 
hasDataValue(?e,?z) ^ swrlb:greaterThan(?z, 
1.5) -> ModerateBODMeasurement(?x) ^ 
tmpModerateBODMeasurement(?x) ^ isPolluted(?ms, 
true) ^ Observation(?x) 

Figure 3.  An output excerpt of the BOD5 monitoring on C-SWRL 

The first rule matches the individuals (?x) of the temporary 
class related to BOD5 measurements and checks its average 
value. If it is between 1.3 and 1.5 then the status is “good” i.e. 
the individual is asserted as of type GoodBODMeasurement. 
The same matching is done with the second and third rule 
respectively. For the second one the average value is checked 
to be lower than 1.3 for its classification. If so, the status is 
“high” i.e. the individual is asserted as of type 
HighBODMeasurement. In the third rule the average value 
is checked to be greater than 1.5 for classifying in “moderate” 
status i.e. class ModerateBODMeasurement. A temporary 
class tmpModerateBODMeasurement is used for 
investigation of sources of pollution. In the first and second 
rule the respective temporary classes are used for displaying 
the calculated status to the user interface. In each RHS of the 
rules the temporary observation individual gets stored in the 
class Observation as per historical data records. Moreover, the 
isPolluted object property is used to maintain the current 
state of the measurement site. It is set to „false‟ in the cases of 
“good” and “high” statuses while it is set to „true‟ when 

detecting “moderate” status.  In the running example the firing 
of rules has produced one “moderate” and one “good” status, as 
illustrated in the lower part of Figure 2 i.e. the lines starting 
with (C-SWRL) label followed by the detected status 
information. Since, the first C-SPARQL calculated average 
value is 1.503 which is greater than 1.5 the third rule has fired 
asserting new individuals in ModerateBODMeasurement 
and tmpModerateBODMeasurement.  

New individual in the class 
tmpModerateBODMeasurement will cause to fire the 
following investigation rule, which is also registered at 
application startup: 

4. tmpModerateBODMeasurement(?x) ^ 
observationResultTime(?x, ?t) ^ 
observationResultLocation(?x, ?ms) ^ has-
SourcesOfPollution(?ms, ?pollsrc) ^ 
potentialPollutant(?pollsrc, 
BiochemicalOxygenDemand) ->  
foundPollutionSources(?x, ?pollsrc) 

This rule binds the “moderate” status observations (?x) 
with measurement site‟s (?ms) nearby BOD5 sources of 
pollution (?pollsrc) extracted from the knowledge base. 
The observations (?x) satisfying the LHS clauses will become 
related with the matching pollution sources. These results will 
be displayed to the user interface right after the “moderate” 
status detection like is shown on the first C-SPARQL result in 
Figure 2. From the Figure we can observe that the potential 
sources of pollution caused on ms11 are “urban storm water 
discharges” and “landfill sites”.  

At the end of each window processing and reasoning, the 
current status of the sites are queried and printed out. On Figure 
2, we can observe that the last statuses for measurement sites 
ms10 and ms11 are “clean” and “polluted”, respectively. 

The monitoring and investigation rules for all the water 
quality parameters are the same as the ones for BOD5, 
described previously. Of course, the threshold values are 
different according to WFD regulations. The query 
AvgObservations will match all the water quality 
observations, except pH ones. For pH observations new query 
similar to AvgObservations was written. Namely, no 
aggregation function is used in the SELECT statement and thus 
no grouping is needed. The FILTER clause uses the equal 
symbol rather than the unequal one. 

IV. RELATED WORKS 

State-of-the-art rule-based systems for reasoning over 
stream data mainly fall into two broad categories: hybrid and 
homogeneous approaches [1]. In the former one the reasoning 
is done by interfacing existing rule reasoner with existing 
ontology reasoner, while in the latter one both ontologies and 
rules are embedded into the same logical language without 
making a priori distinction between the rule predicates and the 
ontology predicates [13].  

A. Hybrid approaches 

Hybrid approaches layer different non-DL rule systems on 
top of ontologies like: production rules, CEP, LP, answer set 
programming (ASP), etc. In our previous work [1], we 



described in more detail about each one of these approaches 
and their pros and cons. In general, hybrid solutions have 
achieved the desired system behavior. However, these 
approaches mainly suffer from translation and reasoner issues 
and potential side-effects occurrence. In these approaches, the 
ontology is translated into the corresponding formalisms of the 
underlying rule system. A drawback of this translation is that a 
possible loss of information may occur. Since the ontology and 
the rules are treated separately then a rule engine and a DL 
reasoner will run concurrently [9]. As argued in [9], some 
inferences would no longer be derived after separating OWL 
and rules. Furthermore, when adding a new rule a possible 
side-effect may occur.  

A similar approach to C-SWRL is followed by StreamRule 
[14], the pioneer of coupling stream processing with ASP non-
monotonic reasoning. Even though the approach is still much 
more prototypical it demonstrates how non-monotonic and 
time-aware reasoning can be integrated into a unique platform 
for stream data reasoning. The continuous rule feature is 
implemented through separate steps. Namely, stream filtering 
and aggregation is done through a stream query processor such 
as CQELS [31], while OClingo [32] is used to enable non-
monotonic reasoning. In C-SWRL we use C-SPARQL for 
filtering and aggregation purposes, and OWLAPI for non-
monotonic reasoning. Even though that CQELS outperforms 
C-SPARQL [38], we preferred C-SPARQL following its 
advantage to use nested aggregations and negation [37, 38]. 
Moreover, we plan to support temporal operators, which lack 
any support in CQELS [37]. Another feature difference 
between StreamRule and C-SWRL is the historical data 
management, which is one of the key requirements of SR tools 
[8]. C-SWRL keeps evidence of every previous environment 
state. For example, one can query the ontology for a particular 
measurement site‟s pollution status of the past. OClingo feeds 
back the reasoning results into Java runtime for further 
processing or display, while in C-SWRL, the results are 
deployed back into the knowledge base through the OWLAPI‟s 
saveOntology function and thus the memory gets released 
and the data are available for query and retrieval.  

Recently, [21] proposed another non-monotonic ASP-based 
SR system, which provides support for C-SPARQL query 
engine. The system supports reasoning even in incomplete 
information cases through negation as failure feature, but like 
StreamRule it does not support historical data management. 
Moreover, the reasoning results are returned as JSON objects to 
the corresponding web socket clients, while in C-SWRL the 
reasoning results are returned as standard RDF data populating 
corresponding ontology classes. 

ETALIS [16] together with EP-SPARQL [12] enables CEP 
with stream reasoning. Even though ETALIS offers reasoning 
on time and location spaces it does not implement the windows 
feature. Time-based windows are supported through its 
wrapper EP-SPARQL, but complicated aggregations within 
windows are not supported [38]. Moreover, there is no support 
for triple-based windows too.   

B. Semantic Web approaches 

In the literature this approach is also referred to as 
interaction of ontologies and rules with tight semantic 
integration [13]. Even though using SWRL with OWL has 
distinct advantages, these approaches mainly suffer from 
limited expressiveness or undecidability [13]. In C-SWRL, the 
required expressivity is extended by C-SPARQL and OWLAPI 
functions. Additionally, works described in [17], [18] and [19] 
prove that decidability can be retained by the so-called DL-safe 
rules. For example, retaining decidability in [17] is done 
through restricting the interface between OWL and rules. 

State of the art homogeny approaches, like the ones 
described in [33, 34], do not make any distinction between 
stream and static data, while also lack implementation. They 
prove that SWRL can be used to infer new and approximate 
knowledge in stream data domains. However, their approach 
does not consider time-aware and non-monotonic reasoning. 
Recently, a SPARQL extension [24] that uses CON-
STRUCT/WHERE clauses to express rules has been proposed. 
Yet again this approach does not consider non-monotonic 
reasoning. The works presented in [30, 35] describe a Rete-
based [28] approach of RDFS entailment rules for producing 
data in a continuous manner. Although supporting time-aware 
and incremental reasoning, the approach does not deal with 
non-monotonic and closed-world reasoning. JNOMO [20] 
shows how SWRL can be extended to embrace non-
monotonicity, CWA and NAF. However, it does not deal with 
stream data, while inclusion of temporal reasoning is 
envisioned as per future works. 

V. CONCLUSION AND FUTURE WORKS 

Until recently most of the SR research has been dedicated 
on ontology and query processing developments. Dealing with 
stream reasoning issues through query processing is not 
enough. Our work goes beyond the query processing 
achievements and thus focusing on rule level implications of 
stream data. SWRL, on its own, lacks the required expressivity 
level to reason over stream data. The main contribution of this 
paper is in establishing a unique Semantic Web rule system 
capable for expressive reasoning over stream data. In this 
vision, we developed C-SWRL which layers SWRL on top of 
C-SPARQL to enable time-aware, closed-world and non-
monotonic reasoning on stream data domains. For non-
monotonic reasoning purposes, C-SWRL uses SWRL together 
with OWLAPI constructs to modify the knowledge base.  

We are currently evaluating the examples presented here in 
Drools, for which we shall conduct a thorough performance 
evaluation and thus analyze the scalability issues. Our initial 
findings show that evaluating C-SWRL proves difficult due to 
the nature of our system, code availability of related systems 
and published evaluation results. Regarding the stream 
processing level it has been discovered that C-SPARQL yields 
considerably lower through-put compared to JTALIS and 
CQELS [22]. Thus, our main evaluation concern remains the 
stream reasoning component. We agree with Barbieri et al. [26] 
urgency for development of specialized reasoners for stream 
data applications. We also plan to evaluate C-SWRL against 
our previously developed Jess system, StreamJess [4]. 
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